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◮ The QCD equation of state (EOS) at zero chemical potential (µ = 0)

⊲ Properties of QGP from the experiment. The significance of the equation of state.

⊲ Nonzero temperature QCD on the lattice.

⊲ Integral method for the calculation of the EOS on the lattice.

⊲ The EOS results at Nt = 4, 6 and 8 (HotQCD result)

◮ The QCD EOS at nonzero chemical potential (µ 6= 0)

⊲ The Taylor expansion method

⊲ EOS results at µ/T = const

⊲ The isentropic EOS at Nt = 4 and 6 (new preliminary result)
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QCD Matter at Extreme Conditions

◮ QCD – the theory of the strong interactions, as a consequence of the nonperturbative
structure of the vacuum has the properties of quark confinement and dynamical chiral
symmetry breaking.

◮ At high temperatures and/or densities the vacuum structure changes and the hadron
constituents – quarks and gluons – are expected to be deconfined and the chiral
symmetry restored. The new phase of nuclear matter is called “quark-gluon plasma”
(QGP).

◮ Where to find QGP:

⊲ Early Universe

⊲ Early stages of supernova explosions

⊲ Neutron stars interior

⊲ Physics experiments - heavy-ion collisions (RHIC, CERN, etc.)



QGP at Experimental Conditions

◮ QGP’s nonperturbative character at T ≈ Tc:

⊲ Dimensional arguments estimate εc ∼ 1 GeV/fm3 and Tc ∼ 170 MeV. (Density
at total overlap of several light hadrons within typical hadron volume of 1-3 fm3.)

⊲ Tc/ΛQCD ≈ 0.5, which means that at experimentally accessible temperatures
T/Tc = 1 − 3 the system is still in a QCD non-perturbative regime

g ≡
√

4παs = O(1).

QGP→ sQGP. Evidence for strong interactions.

⊲ The most adequate tool to study sQGP is a nonperturbative one – Lattice QCD.
Perturbation theory is only a rough guide.



The significance of the EOS of QGP

◮ In heavy-ion collisions after thermalization the system evolves hydrodynamically and
its behavior will depend on the EOS (ε(T ) and p(T )).

◮ The hydrodynamical models that include a QGP phase and a resonance gas for the
hadronic phase connected by a first order phase transition all assume an ideal gas EOS
for the QGP phase. They reproduce the low pT proton elliptic flow.

◮ However still there is no consistent picture that describes the heavy-ion collisions at
RHIC. A more realistic EOS from lattice calculations as an input to the hydrodynamic
models is an obvious direction for comparison with data.



Nonzero Temperature Lattice QCD

The quantum statistical Gibbs ensemble partition function Z(T ) at temperature T and
the Euclidean path integral formulation of QFT are related by

Z(T ) = Tr e−H/T =

∫
∏

x

dφ(x) e−SE(φ,T),

where SE(φ, T ) is the classical action at imaginary time

t = −i/T,
for a field configuration φ(x) on a space-time lattice of dimensions N3 ×Nt. The lattice
temporal extent and temperature are related through

T = 1/(atNt).

On the lattice:
SE(U,Ψ,Ψ) = SG(U) + SF(U,Ψ,Ψ)

︸ ︷︷ ︸

ΨMΨ

.

The expectation value of an observable O(U,Ψ,Ψ) is given by

〈O〉 =
1

Z

∫

[dU][dΨ][dΨ]O(U,Ψ,Ψ)e−SE(U,Ψ,Ψ) =
1

Z

∫

[dU]O(U)det (M) e−SG(U).



Lattice actions

◮ Gauge action: 1-loop improved Symanzik action. Discretization errors – O(α2
sa

2, a4).

SG = β
∑

x,µ<ν

(1 − Pµν) + βrt

∑

x,µ<ν

(1 − Rµν) + βch

∑

x,µ<ν<σ

(1 − Cµνσ),

◮ Fermion action: Asqtad staggered quark action – tree level improved, taste violations
supressed. Discretization erros – O(α2

sa, a
4).

SF = ΨMΨ

M = 2mf +
∑

i

ci(Vi − V
†
i )

︸ ︷︷ ︸

fat link

+w(L− L†)
︸ ︷︷ ︸

Lepage term

+ v(N −N†)
︸ ︷︷ ︸

Naik term

◮ Simulation algorithm: Hybrid Molecular Dynamics R algorithm.



The Symanzik Improved Gauge action

◮ Symanzik improved gauge action: 1x1 plaquette loops, 2x1 rectangles and the 3D
chairs. The last two loops are introduced in the action with appropriate parameters in
order to cancel the a2 artifacts at tree level.

SG = β
∑

x,µ<ν

(1 − Pµν) + βrt

∑

x,µ<ν

(1 − Rµν) + βch

∑

x,µ<ν<σ

(1 − Cµνσ),

where β = 10
g2

, βrt = − β
20u2

0

(1 + 0.4805αs), βch = − β
u2

0

0.03325 with αs = −4 ln(u0)
3.0684

and u0 = 〈P 〉1/4.
◮ The action coefficients are calculated using lattice tadpole improved perturbation the-

ory.

◮ The tadpole improvement refers to the technique for summing to all orders the large
perturbative contributions of the specific for lattice QCD tadpole diagrams. At tree
level this simply means Uµ → Uµ/u0 in the action.

◮ Thus the discretization errors are reduced to O(α2
sa

2).



Lattice Loop Terms in the Gauge Action
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The Asqtad Quark Action

◮ There is a taste symmetry violation in the standard staggered action, which can be
understood as quark changing their taste as they interact with high momentum (∼
π/a) gluons.

ζπ/a

0 ζπ/a

0 ζπ/a

◮ Asqtad quark action reduces the taste symmetry breaking by means of terms which
suppress the taste changing interactions. Lattice artifacts of order a2 are removed at
tree level and the leading errors are O(αsa

2).

SAf = ΨMΨ

M = 2mf +
∑

i

ci(Vi − V
†
i )

︸ ︷︷ ︸

fat link

+w(L− L†)
︸ ︷︷ ︸

Lepage term

+ v(N −N†)
︸ ︷︷ ︸

Naik term

◮ To simulate nf flavors - (detM)nf/4.



Lattice Gauge Paths in the Asqtad Action
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◮ Link – V1, term in the fat link

◮ Staple – V3, term in the fat link

◮ 5-Staple – V5, term in the fat link

◮ 7-Staple – V7, term in the fat link

◮ Lepage term – L, corrects for small
O(a2) error introduced by the fat link

◮ Naik term – N , improves dispersion re-
lation



Taste splitting of the pion multiplet



The EOS on the Lattice using the Integral Method

Start from the thermodynamic identities:

εV = − ∂ lnZ

∂(1/T )

∣
∣
∣
∣
V
,

p

T
=
∂ lnZ

∂V

∣
∣
∣
∣
T
≈ lnZ

V
, I = ε− 3p = −T

V

d lnZ

d ln a
,

where V = N3
sa

3, T = 1
Nta

. The partition function is

Z =

∫

dU exp






−Sg +

∑

f

(nf/4)Tr ln[M(amf , U, u0)]






.

with M(amf , U, u0) the fermion matrix corresponding to the Asqtad quark action with
2 degenerate light quark flavors and 1 heavy quark flavor.

Thus:

Ia4 = −6
dβpl

d ln a
∆ 〈P 〉 − 12

dβrt

d ln a
∆ 〈R〉 − 16

dβch

d ln a
∆ 〈C〉

−
∑

f

nf
4

[

d(mfa)

d ln a
∆

〈
ψ̄ψ

〉

f +
du0

d ln a
∆

〈

ψ̄
dM

du0
ψ

〉

f

]

.



The EOS on the Lattice using the Integral Method

pa4 =

∫ ln a

ln a0

(−Ia′4)d ln a′

where ln a0 is determined by where (the zero-temperature corrected) Ia4 = 0 at coarse
lattice spacings.

The energy density is given by:

εa4 = (I + 3p)a4

Observables to calculate: all gauge loops plus the fermion quantities in the zero- and
nonzero-temperature phases

〈
ψ̄ψ

〉

f =
〈

2aM−1
〉

f
〈

ψ̄
dM

du0
ψ

〉

f
=

〈
dM

du0
M−1

〉

f
.



Choosing the Action Parameters

◮ Action parameters to choose: β, ms, mud and u0. Changing the parameters changes
the lattice scale a and the physics on the lattice.

◮ Simulations at different parameters and scales represent the same physics if:

⊲ mηss/mφ = const - fixes the heavy quark mass

⊲ mπ/mρ = const - fixes the light quark mass

◮ We want a guark-gluon system for which we change the temperature (T = 1/(aNt))
without changing the physics. We have to choose the parameters of the action in a
way that lets us stay on a chosen constant physics trajectory at zero temperature. We
approximate two such trajectories:

⊲ mud ≈ 0.2ms, (mπ/mρ ≈ 0.4)

⊲ mud ≈ 0.1ms, (mπ/mρ ≈ 0.3)

Both trajectories have ms tuned to the physical strange quark mass within 20 %.



Parameterizing the Constant Physics Trajectories

◮ Construction of a constant physics trajectory:

⊲ At anchor points in β, tune mπ/mρ and mη/mφ.

⊲ Between anchor points the trajectory is interpolated, using a one-loop RG inspired
formula.

◮ The mud = 0.2ms trajectory – 3 anchor points β = 6.467, 6.76, and 7.092:

ams =







0.082 exp
(

(β − 6.4674)
ln(0.050/0.0820)
(6.76−6.4674)

)

, β ∈ [6.467, 6.76]

0.05 exp
(

(β − 6.76)
ln(0.031/0.05)
(7.092−6.76)

)

, β ∈ [6.76, 7.092]

amud =







0.01675 exp
(

(β − 6.4674)
ln(0.010/0.01675)

(6.76−6.4674)

)

, β ∈ [6.467, 6.76]

0.01 exp
(

(β − 6.76)
ln(0.00673/0.01)

(7.092−6.76)

)

, β ∈ [6.76, 7.092].



Parameterizing the Constant Physics Trajectories

◮ The mud = 0.1ms trajectory – 2 anchor points β ∈ [6.458, 6.76]:

ams = 0.05 exp

(

(β − 6.76)
ln(0.082/0.05)

(6.458 − 6.76)

)

amud = 0.005 exp

(

(β − 6.76)
ln(0.0082/0.005)

(6.458 − 6.76)

)

.

◮ For both trajectories, for values of β out of the above intervals, the formulas are used
as extrapolations appropriately.



Constant physics trajectories



Determination of the Lattice Spacing

◮ The lattice spacing a can be calculated from 1S − 2S Υ splittings

a = (a∆E)lat/∆Eexp

◮ Measurements from about 30 zero temperature ensembles are fitted to

a

r1
=
c0f(g2) + c2g

2f3(g2) + c4g
4f3(g2)

1 + d2g2f2(g2)
,

where r1 = 0.318(7)(4) fm. The definition of

f(g2) = (b0g
2)−b1/(2b

2
0
)e−1/(2b0g

2)

involves the universal beta-function coefficients for massless three-flavor QCD, b0 and
b1. The coefficients c0, c2 and c4 are

c0 = c00 + (c01uamud + c01sams)/f(g2) + c02(2amud + ams)
2/f2(g2)

c2 = c20 + c21(2amud + ams)/f(g2)

c4 = c40

d2 = d20,

The fit has χ2/DOF ≈ 1.3 and a CL 0.13.



Constant physics trajectories



Simulations Overview

◮ We simulate 2+1 flavor QCD with mud = 0.1ms and 0.2ms along trajectories of
constant physics using improved gauge and quark actions. Our system is at thermal
equilibrium and zero chemical potential.

◮ Simulation algorithm – the inexact dynamical R-algorithm at Nt = 4 and 6. Step-size
of the equations of motion integration is the min of 2/(3mud) and 0.02, in some cases
even smaller. Estimated step-size errors are up to the size of the statistical errors. For
Nt = 8 the exact RHMC algorithm is used.

◮ Temperature 1/(aNt) is changed by varying a (0.09 – 0.39 fm) along the trajectory
and keeping Nt = const. The cases of Nt = 4, 6 and 8 (HotQCD) are interesting
to compare since at smaller Nt the taste splitting in the improved staggered action is
worse - we want to know how this affects the EOS.



EOS results – Interaction measure



EOS results – Pressure



EOS results – Energy density



◮ THE QCD EQUATION OF STATE AT NONZERO
CHEMICAL POTENTIAL
arXiv:0710.1330 [hep-lat]



The EOS with 2+1 flavors at non-zero chemical potential

◮ We use the Taylor expansion method (C.R. Allton et. al, Phys.Rev. D66(2002)
074507).

◮ Pressure:
p

T 4
=

lnZ

V T 3
=

∞∑

n,m=0

cnm(T )
(µ̄l
T

)n (µ̄h
T

)m
.

Due to the CP symmetry the series nonzero terms are even in n + m. The nonzero
coefficients are

cnm(T ) =
1

n!

1

m!

N3
τ

N3
σ

∂n+m lnZ
∂(µlNτ )

n∂(µhNτ )
m|µl,h=0 ,

◮ Interaction measure:

I

T 4
= −N

3
t

N3
s

d lnZ

d ln a
=

∞∑

n,m

bnm(T )
(µ̄l
T

)n (µ̄h
T

)m
,

where again only even terms are nonzero and

bnm(T ) = − 1

n!m!

N3
t

N3
s

∂n+m

∂(µlNt)
n∂(µhNt)

m

∣
∣
∣
∣
∣
µl,h=0

(
d lnZ

d ln a

)

.



Some of the pressure expansion coefficients: mud = 0.1ms, Nt = 4



Some of the I expansion coefficients: mud = 0.1ms, Nt = 4



Tuning the strange quark density to ns = 0 at Nt = 4

◮ The strange quark density ns/T
3: left – results with µ̄h/T = 0; right – tuned results.



Corrections to pressure, Nt = 4: ∆p/T 4 = p(µl,h 6= 0)/T 4 − p(µl,h = 0)/T 4



Corrections to I at Nt = 4 : ∆I/T 4 = I(µl,h 6= 0)/T 4 − I(µl,h = 0)/T 4



Corrections to energy density, Nt = 4: ∆ε = /T 4 = ε(µl,h 6= 0)/T 4 − ε(µl,h = 0)/T 4



The isentropic trajectories for different s/nB

◮ The AGS, SPS and RHIC produce matter expands isentropically, i.e., the entropy
and barion densities s and nB are fixed This implies that s/nB = const . For the
experiments mentioned, s/nB ≈ 30, 45 and 300.

◮ The isentropic trajectories in the (µl, µh, T ) space, obtained by numerically solving
the system

s

nB
(µl, µh) = C

ns
T 3

(µl, µh) = 0,

with C = 30, 45, 300.



Isentropic pressure



Isentropic I = ε− 3p
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(preliminary)



Isentropic energy density



Isentropic light quark density



Isentropic light quark susceptibility



Isentropic strange quark susceptibility



Isentropic off-diagonal quark susceptibility



Conclusions

◮ We have calculated the EOS for 2+1 dynamical flavors of improved staggered quarks
(mud/ms = 0.1 and 0.2) along trajectories of constant physics, at Nt = 4, 6, and 8.

◮ Our results show that the different Nt results are quite similar except in the crossover
region where the interaction measure is a bit higher on the finer Nt = 6 lattice.

◮ We also do not see significant differences between the EOS results from the two physics
trajectories.

◮ We find deviations from the 3 flavor Stefan–Boltzmann limit in the temperature region
that we have studied.

◮ Non-zero chemical potential EOS study was done for the mud/ms = 0.1 trajectory
and the isentropic EOS was determined for Nt = 4 and 6 (new preliminary result).


