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Because of causality, the relativistic dissipative fluid will be

a non-Newtonian fluid. Thus

1) The GKN formula should be modified.

2) 1/4rn can be a lower bound of the shear of Newtonian fluids.
3) The fluid expands to vacuum by forming a stationary wave.
4) The additional viscosity is still necessary stabilize solutions.



Infinite speed In diffusion process
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Infinite speed In diffusion process
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Relativistic NR equation(1+1)

Hiscock&Lindblom(‘85)

Linear perturbation analysis
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At k=K, the dispersion relation is reduced to the diffusion type.



Introduction of memory effect

Equation of continuity 5
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Landau-Lifshitz theory

Equation of Continuity
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Introduction of Memory Effect

Entropy four current T.K.,Denicol,Mota&Kodama(2007)
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Dispersion relation(1+1)
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Stable in the sense of the linear analysis.



Linear analysis of stability

Hiscock& Lindblam (‘85), Kouno,Maruyama, Takagi&Saito (‘90)

LL equation CDhydro
Equilibrium Stable Stable
Lorentz boost Unstable Stable
Scaling solution Stable/UnstabIe ?

* The Eckert theory is more unstable than the LL theory.



Stability around scaling solution
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Newtonian fluid




Bingham flow

sludge, paint,
blood, ketchup

Anomalous viscosity

Pseudoplastic latex, paper pulp, clay solns.

Viscosity

Thixotropic
Rheopectic -

Velocity gradient
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Dilatant

guicksand,
candy compounds

S QGP ?




Common sense”?

The transport coefficients are given by the
Green-Kubo-Nakano formula.

t

"he lower bound of the shear viscosity of
ne CD hydro. is given by 1/(4rx).

The viscosity Is small correction.

We do not need any additional viscosity In

t

he CD hydro.

Not trivial !



Linear response theory

Hamiltonian

H

External perturbation = H — AF (t)



Green-Kubo-Nakano formula

Exact!

(J)= j dsb(t —s)F(s)
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In Newtonian fluid, transport coefficients are defined by D =
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Generalization of GKN formula

T.K.&Maruyama (2004), T.K.(2005), T.K.(2007), T.K.&Kodama (2008)

GKN formula il <J (t), J>

New formula A2 = </0(t)1 ‘]>

1. In the GKN formula, we need X;
In the generalized formula, we need #; and />
2. JX-,characterizes the deviation from the GKN formula.
3. When X2 vanishes in the low momentum limit,
the new formula reproduces the GKN formula.
4. The result obtained in the new formula is consistent with
sum rules.




Lower limit of shear viscosity?
Kovtun,Soné&Starinets(“05)
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Lower limit of shear viscosity?
Kovtun,Soné&Starinets(“05)

1) GKN formula O s (0)
- 4G
~lim-— j ditd*xe™ ([T, (%,1),T,,,(0,0)])
2) Absorption cross section n= O as(0)
167G

877G N
O s (@) = f dtd*xe ([T,, (X,1), T, (0,0)]) G: Newton’s constant




Common sense”?

* The transport coefficients are given by the
Green-Kubo-Nakano formula.

 The lower bound of the shear viscosity of
the CD hydro. is given by 1/(4rx).

» The viscosity Is small correction.




In the following calculations,
we consider only the 1+1 dimensional fluid.



Expansion of fluid

It seems to be

/ a stationary wave.




Universal relation between
pressure and viscosity

We assume that the fluid forms a stationary wave at the
boundary to vacuum. Then at the boundary,

a(T®+TH)=vT*(1+V7)
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1.

pressure

(-1) * viscosity

The causal fluid expands as
a stationary wave.

2. Viscosity can be the same

8

order as energy density and
pressure.



Common sense”?

The transport coefficients are given by the
Green-Kubo-Nakano formula.

t

"he lower bound of the shear viscosity of
ne CD hydro. is given by 1/(4rx).

The viscosity is small correction.

We do not need any additional viscosity In

t

he CD hydro.



Numerical oscillation
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The frequency is the size of the grid.

| > unstable




Usual “artificial” viscosity

Navier-Stokes type: 52U / 5X2

Burnett type: (8u / 5X)2

Neumann-Richtmyer type: (5U / 5X) 6’(—5U / 8X)

Generalization to relativistic cases ? Causal?



Additional causal viscosity

We need to introduce the artificial viscosity consistent with
causality.
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Additional viscosity
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Effect to entropy production
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The effect of
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Summary

The transport coefficients are given by the Green-Kubo-Nakano

formula.
No. We need a new formula

| = for no-Newtonian fluids

The lower bound of the shear viscosity of the CD hydro. is given by 1/(4x)

— Not yet clear for
causal dissipative hydro.

The viscosity is small correction.
| — No. We have a relation P =—I1
and forms a stationary wave.

We do not need any additional viscosity in the CD hydro.

| = We need.




We have to check

Is the new formula really useful or not.

What is the lower bound of the causal
shear viscosity?

CD hydro Is a stable theory?

Are numerical oscillations we found due to
the problem of numerical calculation or the
problem of the theory (turbulence)?



That Is, the causal hydrodynamics
will be one of non-Newtonian fluids!!

Newtonian Non-Newtonian

a .i;-i
Lvian




Stability and Causality(1+1)

T.K. Denicol,Kodama&Mota (‘07)
Linear perturbation analysis of the causal hydro.
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It Is difficult to cut high momentum
modes to avoid unstable modes.

Model equation of hydro
U Non-linear effect
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We need to find a new theory to satisfy causality.
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