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Study of the strongly interacting matter and its new “phases” 

Past:  
AGS, SPS, Ecm=(1-17) GeV 
 
Present :  
RHIC,  Ecm=(5.5-200) GeV,  
LHC, Ecm=2.76 TeV, 5.5 TeV 
 
Future:   
NICA, CBM@FAIR  
Ecm=(1-17) GeV 

Theory: 

Low T, low density: 
Effective theories,  
Virial expansion 

High T, high desnity: 
Weak coupling 
methods 

Lattice 
QCD 
and 
Super- 
computing 

Experiment: 



Relativistic Heavy Ion Collisions 
 

24racks , 1 rack = 1024 processors 

18 racks 
1 rack= 2048 processors 

RHIC: 

LHC: ALICE,  also 
HI in  CMS and ATLAS 

STAR 

PHENIX 



asymptotic freedom  
confinement 

Strong interactions and QCD  

Quarks and gluons  
cannot exist as free  
particles. Observed particles 
are color charge neutral 

Quantum Chromo Dynamics (QCD) : SU(3) non-Abelian gauge theory coupled 
to fermions 

Structure and Interaction of Hadrons  

gluon self interactions 

Mesons     Baryons 

heavy  

Nobel Prize 2004 

3-5MeV 100 MeV 

quark masses make up only 2% of the  
mass of the  proton or neutron (~940Mev) ! 
98% of the visible mass in the Universe  
comes  from gluon dynamics and confinement !  

Gross, Politzer, Wilczek 

qq qqq 

In medium :  
Chromo Magnetic screening, 
Gluon saturation 
 

Need lattice QCD to study their properties 



Cabbibo, Parisi, PLB 59 (75) 67 
 
Realization that at high energy hadronic language is not appropriate  
and reinterpretation of the limiting temperature as the phase transition temperature 
To medium consisting of quarks and gluons  

Hagedorn, Nouvo Cim. 35 (65) 395 
 
Exponentially increasing density of hadronic states => limiting temperature  

New states of strongly interacting matter ?  

Collins and Perry,  PRL 34 (1975) 1353 
At very high density strongly interacting matter should consist of quarks due to assymptotic 
freedom   

I. Ya. Pomeranchuk, Doklady Akad. Nauk. SSSR 78 (1951) 889  
 
Because of finite size of hadrons hadronic matter cannot exist up to arbitrarily high 
Temperature/density, hadron size has to be smaller than 1/T 



Deconfinement at high temperature and density  

Hadron Gas  

Transition  

Quark Gluon Plasma (QGP) 

Why this is interesting  ? : 
basic properties of strong interaction 
 
astrophysical (compact stars and transients):  
boundaries of hadronic matter 
 
cosmological consequences   
(Early Universe few microseconds after Big Bang) 

LQCD 



Symmetries of QCD in the vacuum at high T 
•  Chiral symmetry :   

•  Center (Z3) symmetry : invariance under global gauge transformation 
    

Exact symmetry for infinitely heavy quarks and the order parameter is the 
Expectation value of the Polyakov loop: 
   

restored 

broken 

spontaneous symmetry breaking or Nambu-Goldstone symmetry realization  
                                                                                                        2008 

hadrons with  opposite parity have very different  masses,  
interactions between hadrons are weak  at low E 

η’ meson mass, π-a0  mass difference  

•  Axial or UA(1) symmetry:   

is broken by anomaly (ABJ) :  

Effectively 
restored ? 

topology 



QCD phase diagram as function of the quark mass 

 
relation to spin models 

For very large quark masses there  
is a 1st order deconfining phase transition  

Chiral transition:  
•  For vanishing u,d -quark masses the  
Chiral transition is either 1st order or 2nd  
order phase  transition 
 
•  For physical quark masses there  
could be a 1st  order  phase transition 
 or crossover 

Evidence for 2nd order transition in the chiral limit 
=> universal properties of QCD transition: 

Pisarski, Wilczek,  PD29 (1984) 338  

transition is a  crossover  
for physical quark masses  



Deconfinement : entropy, pressure and energy density   

•   rapid change in the number of degrees of freedom at T=160-200MeV:  deconfinement  
•  deviation from ideal gas limit is about  10% at high T consistent with the  perturbative result 
•  no obviously large discretization errors in  the pressure and energy density at high T 
•  energy density at the chiral transition temperature ε(Tc=154MeV)=240 MeV/fm3 :  

free gas of quarks and gluons = 18 quark+18 anti-quarks +16 gluons 
=52 mass-less d.o.f  meson gas = 3 light d.o.f. 

Bazavov et al (HotQCD), PRD 80 (09) 14504           Petreczky, NPA 830 (10) 11c 

RHIC 
LHC 



Deconfinement and color screening   

free energy of a static quark 

infinite in the pure glue 
theory or  large in the 
“hadronic” phase ~600MeV  

decreases in 
in the  deconfined  
phase  

Singlet free energy of static quark anti-quark 
pair shows Debye screening at 
high temperatures 

melting of bound states 
of heavy quarks => quarkonium 
suppression at RHIC 



high temperature QCD 
weak coupling ? 

Chiral transition, Tc , fluctu-
ations of conserved charges  

test of Hadron  
Resonance Gas  
(HRG) 
using LQCD 

Physics of heavy ion collisions and LQCD 

EoS,  
viscosity 

Control parameters: Ecm ,  rapidity  ηs , y : energy denisty and baryon density 
                            
                                       
                            
                          Colliding species (Pb, Au, Cu, U), centrality of the collisions: 
                           energy density, system geometry 

        b 
Impact 
parameter 

Centrality is quantified by impact paremater b,  
number of participating nucleons Np or centrality bins % 
centrality ~ (b/2RA ) 
More central collisions more  Nucleons participate in the collisions 
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and the typical z momentum. For example a particle with typical momentum pz

and energy E will be found in a definite region of space time

vz =
pz

E
! z

t
. (34)

This kinematics is best analyzed with proper time and space-time rapidity vari-
ablesb, τ and ηs

τ ≡
√

t2 − z2 , ηs ≡ 1

2
log

(
t + z

t − z

)

.

At a proper time τ particles with rapidity y are predominantly located at space
time rapidity ηs

y ≡ 1

2
log

pz + E

E − pz
! 1

2
log

t + z

t − z
≡ ηs . (35)

Fig. 11 illustrates these coordinates and shows schematically the identification be-
tween ηs and y. At an initial proper time τo, there is a collection of particles
predominantly moving with four velocity uµ in each space-time rapidity slice

1

2
log

(
u0 + uz

u0 − uz

)

! ηs . (36)

The beam rapidity at RHIC is ybeam ! 5.3 and therefore roughly speaking the
particles are produced in the space-time rapidity range −5.3 < ηs < 5.3. It is
important to realize that (up to about a unit or so) each space-time rapidity slice
is associated with a definite angle in the detector. For ultra-relativistic particles
E ! p we have

ηs ! y ! 1

2
log

(
p + pz

p − pz

)

=
1

2
log

(
1 + cos θ

1 − cos θ

)

≡ ηpseudo , (37)

where a particular θ is shown in Fig. 1. The measured pseudo-rapidity distribution
of charged particles is shown in Fig. 12. We can estimate the energy in a unit
of pseudo-rapidity by taking 〈E〉 ! 0.5 GeV as the energy per particle. Then the
energy in a pseudo-rapidity unit is

dE

dηpseudo

! 〈E〉 dNch

dηpseudo

× 1.5 ! 3.0 GeV × (Np/2) ,

where (Np/2) ! 170 is the number of participant pairs in a central event. The
factor of 1.5 has been inserted to account for the fact that there are approximately
equal numbers of π+, π− and π0 (the most abundant particle) but only π+ and π−

are counted in dNch/dηpseudo. This estimate agrees reasonably with the measured
dET /dηpseudo ! 3.2 GeV × Np/2 from Ref.80.

b Here ηs denotes the space time rapidity, ηpseudo denotes the pseudo-rapidity (see below), η
denotes the shear viscosity. In raised space time indices in τ, ηs coordinates we will omit the “s”
when confusion can not arise, e.g. πηη = πηsηs .
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Qs ~ 1GeV 



Bulk observables :  
yield of particles not containing heavy quarks 
As function of azimuth and transverse momentum pT, pT<2 GeV 
99% of all particle identified in HI Collisions   
 
Penetrating probes :   
high pT particles (jets), quarkonia, photons                                              
and dileptons, heavy flavor hadrons 
Yield ~ # of binary collisions if no medium is formed  
(incoherent superposition of nucleon-nucleon scatterings) 
 
Nuclear modification factor: RAA= yield in AA/ (yield in pp x # of binary collisions)   

Physics of heavy ion collisions and LQCD (cont’d) 
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this top 10% of events may be found by a purely geometrical argument. This line
of reasoning gives that the top 10% of events are produced by collisions with an
impact parameter in the range

0 < b < b∗ , where 10% =
πb∗

2

σtot
, (3)

and σtot ! π(2RA)2 is the total inelastic cross section. After categorizing the top
10% of events we can categorize the top 10-20% of events and so on. The general
relation is

(
b

2RA

)2

! % Centrality . (4)

Here we have neglected fluctuations and many other effects. For instance there is a
very small probability that an event with impact parameter b = 4 fm will produce
the same multiplicity as an event with b = 0 fm. A full discussion of these and many
other issues is given in Ref.35. The end result is that the magnitude of the impact
parameter b can be determined to within half a femptometer or so36.

Now that the impact parameter is quantified, a useful definition is the number
of participating nucleons (also called “wounded” nucleons). The number of nucleons
per unit volume in the rest frame of the nucleus is ρA(x−xo, z), were x−xo is the
transverse displacement from a nucleus centered at xo, and z is the longitudinal di-
rection. These distributions are known experimentally and are reasonably modeled
by a Woods-Saxon form35. The number of nucleons per unit transverse area is

TA(x − xo) =

∫ ∞

−∞

dz ρA(x − xo, z) . (5)

Then, after reexamining Fig. 3, we find that the probability that a nucleon at
x = (x, y) will suffer an inelastic interaction passing through the right nucleus
centered b/2 = (+b/2, 0) is

1 − exp (−σNNTA(x − b/2)) ,

where σNN ! 40 mb is the inelastic nucleon-nucleon cross section. The number of
nucleons which suffer an inelastic collision per unit area is then

dNp

dxdy
= TA(x⊥ + b/2) [1 − exp (−σNNTA(x⊥ − b/2))]

+ TA(x⊥ − b/2) [1 − exp (−σNN TA(x⊥ + b/2))] . (6)

Finally, the total number of participants (i.e. the the number of nucleons which
collide) is

Np =

∫

dxdy
dN

dxdy
. (7)

For a central collision of two gold nuclei the number of participants Np ! 340 nearly
equals the total number nucleons in the two nuclei, N = 394, leaving about fiftyLQCD: 

Tc, EoS, fluctuations 
of conserved charges 

LQCD: 
Meson and field  
Strength correlation  
Functions with  
exception of jets 

Nucleon density in the transverse plane 

in-elastic nucleon-nucleon cross section ~40mb 

Baryon density is the smallest at y=0 and almost zero to top RHIC and LHC energies and  
increases with y  



Particle spectra and elliptic flow parameter v2 
 
 
 
 
 
 
 
 
 
  
  pressure gradients create anisotropic flow 

Spatial anisotropy  
⇒ momentum space anisotropy 
very small shear viscosity is needed to 
 have flow in a mesoscopic system 
While water flows fine in usual circumstates 
1000 water molecules will never flow (Edward Shuryak) 

The perfect liquid created in RHIC  

P.P, Huovinen NPA837 (2010) 26 
RHIC Scientists Serve Up "Perfect" Liquid 
New state of matter more remarkable than predicted -- raising many new questions 
Monday, April 18, 2005 
TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- 
a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say 
they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of 
atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-
reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of 
behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion 
collisions appears to be more like a liquid. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hydrodynamic models in heavy ion collisions 
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will discuss the recent advances in interpreting the hydrodynamic equations beyond
the Navier Stokes limit. This work will lay the foundation for the more detailed
hydrodynamic models presented in Section 6.

4.1. Ideal Hydrodynamics

The stress tensor of an ideal fluid and its equation of motion are simply

T µν = euµuν + P∆µν , ∂µT µν = 0 , (30)

where e is the energy density, P(e) is the pressure, and uµ = (γ, γv) is the four
velocity. Here we will use the metric (−, +, +, +) and define the projection tensor,
∆µν = gµν + uµuν , with uµuµ = −1 and ∆µνuµ = 0. This decomposition of
the stress tensor is simply a reflection of the fact that in the local rest frame of
a thermalized medium the stress tensor must have the form, diag(e,P ,P ,P). In
developing viscous hydrodynamics we will define two derivatives which are the time
derivative D, and the spatial derivatives ∇µ in the local rest frame

D ≡ uµ∂µ , ∇µ ≡ ∆µν∂µ . (31)

Using ∂µ = −uµD + ∇µ and uµDuµ = 0, the ideal equations of motion can be
written

De = −(e + P)∇µuµ , (32)

Duµ = − ∇µP
e + P . (33)

The first equation says that the change in energy density is due to the PdV work
or equivalently that entropy is conserved. To see this we associate ∇µuµ with the
fractional change in volume per unit time in the co-moving frame, dV/V = dt ×
∇µuµ, and use the thermodynamic identity, d(eV ) = Td(sV ) − PdV . The second
equation says that the acceleration is due to the gradients of pressure. The enthalpy
plays the role of the mass density in a relativistic theory.

4.2. Ideal Bjorken Evolutions and Three Dimensional Estimates

In this section we will follow an analysis due to Bjorken77 and apply ideal hydro-
dynamics to heavy ion collisions. Bjorken’s analysis was subsequently extended in
important ways78,13,79. In a high energy heavy ion collisions the two nuclei pass
through each other and the partons are scarcely stopped. This statement under-
lies much of the interpretation of high energy events and an enormous amount of
data is consistent with this assumption. For a time which is short compared to the
transverse size of the nucleus, the transverse expansion can be ignored.

Given that the nuclear constituents pass through each other, the longitudinal
momentum is much much larger than the transverse momentum. Because of this
scale separation there is a strong identification between the space-time coordinates
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Fig. 13. Figure from Ref.9 showing the entropy density (s) in CuCu simulations as a function
of proper time τ using ideal and viscous hydrodynamics. The top set of lines shows the entropy
in the center of the nucleus-nucleus collision, (r = 0 fm), and the bottom set of lines shows the
analogous curves closer to the edge (r = 3 fm). During an initial one dimensional expansion the
entropy density decreases as s ∝ 1/τ . Subsequently the entropy decreases as s ∝ 1/τ3 when the
expansion becomes three dimensional at a time, τ ∼ 5 fm. The lines labeled by (0 + 1) ideal and
(0 + 1) viscous are representative of the ideal and viscous Bjorken results Eq. (42) and Eq. (55)
respectively.

Quantity 1D Expansion 3D Expansion

T
(

1
τ

)1/3÷1/4 (
1
τ

)1÷3/4

s ∝ T 3
(

1
τ

)1÷3/4 (
1
τ

)3÷9/4

Table 1. Dependence of temperature and entropy as a function of time in a 1D and 3D expansion.
The indicated range, for instance 1/3÷1/4, is an estimate of how extreme non-equilibrium effects
could modify the ideal power from 1/3 to 1/4.

be rewritten as spatial derivatives. First the stress tensor is decomposed into ideal
and viscous pieces

T µν = T µν
ideal + πµν + Π∆µν , (51)

where T µν
id is the ideal stress tensor (Eq. (30)) and Π is the bulk stress. πµν is

the symmetric traceless shear tensor and satisfies the orthogonality constraint,
πµνuν = 0. The equations of motion are the conservation laws ∂µT µν = 0 to-
gether with a constituent relation. The constituent relation expands πµν and Π
in terms gradients of the conserved charges T 00 and T 0i or their thermodynamic
conjugates, temperature T and four velocity uµ . To first order in this expansion,
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the equations of motion are

∂µT µν = 0 , πµν = −ησµν , Π = −ζ∇µuµ , (52)

where η and ζ are the shear and bulk viscosities respectively, and we have defined
the symmetric traceless combination

σµν = ∇µuν + ∇νuµ − 2

3
∆µν∇λuλ . (53)

For later use we also define the bracket 〈. . .〉 operation

〈Aµν〉 ≡ 1

2
∆µα∆νβ (Aαβ + Aβα) − 1

3
∆µν∆αβAαβ , (54)

which takes a tensor and renders it symmetric, traceless and orthogonal to uµ. Note
that σµν = 2 〈∂µuν〉.

We now extend the Bjorken model to the viscous case following Ref.13. The
bulk viscosity is neglected in the following analysis and we refer to Section 3 for
a more complete discussion. Substituting the Bjorken ansatz (Eq. (40)) into the
conservation laws and the associated constituent relation (Eq. (52)) yields the time
evolution of the energy density

de

dτ
= −

e + P − 4
3η/τ

τ
. (55)

The system is expanding in the z direction and consequently the pressure in the z
direction is reduced from its ideal value. Formally this arises due to the gradient
∂zuz = 1/τ and the constituent relation Eq. (52)

T zz = P − 4

3

η

τ
. (56)

Thus during a viscous Bjorken expansion the system will do less longitudinal work
than in the ideal case.

4.4. The Applicability of Hydrodynamics and η/s

Comparing the viscous equation of motion Eq. (55) to the ideal equation of motion
Eq. (42), we see that the hydrodynamic expansion is controlled by

η

e + P
1

τ
& 1 . (57)

This is a very general result and is a function of time and temperature. Using the
thermodynamic relation e + P = sT , we divide this condition into a constraint on
a medium parameter η/s and a constraint on an experimental parameter 1/τT

η

s
︸︷︷︸

medium parameter

× 1

τT
︸︷︷︸

experimental parameter

& 1 . (58)

If the experimental conditions are favorable enough, it is appropriate to apply
hydrodynamics regardless of the value of η/s. This is the case for sound waves in air
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If the experimental conditions are favorable enough, it is appropriate to apply
hydrodynamics regardless of the value of η/s. This is the case for sound waves in air

Ideal hydrodynamics: 

Viscous hydrodynamics: 
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well supported assumption that the energy which finally flows into the detector
dET /dηpseudo largely reflects the initial energy in a given space-time rapidity slice

εBj ! 1

A

∆E

∆z
! 1

Aτo

∆E

∆ηs
! 1

Aτo

dET

dηpseudo

, (38)

! 5.5
GeV

fm3 . (39)

In the last line we have estimated the area of a gold nucleus as A ! 100 fm2, taken
τo ! 1 fm, and used the measured dET /dηpseudo. This estimate is generally consid-
ered a lower limit since during the expansion there is PdV work as the particles in
one rapidity slice push against the particles in another rapidity slice13,78,79 (See
Fig. 11). Using the equation of state in Fig. 9 we estimate an initial temperature,
T (τo) ! 250 MeV. As mentioned above this estimate is somewhat low for hydro-
dynamic calculations and a more typical temperature is T ! 310 MeV, which has
roughly twice the Bjorken density24.

As seen in Fig. 12, the distribution of the energy density e(τo, ηs) in space-
time rapidity is not uniform. In the Color Glass Condensate (CGC) picture for
instance, the final distribution of multiplicity is related to the x distribution of
partons inside the nucleus44. Bjorken made the additional simplifying assumption
that the energy density is uniform in space-time rapidity, i.e. e(τo, ηs) ! e(τo). With
this simplification, the identification between the fluid and space time rapidities
remains fixed as the fluid flows into the forward light cone.

We have discussed the motivation for the Bjorken model. Formally the model
consists of the following ansatz for the hydrodynamic variables

e(t,x) = e(τ) , uµ(t,x) = (u0, ux, uy, uz) = (cosh(ηs), 0, 0, sinh(ηs)) . (40)

The model is invariant under boosts in the z direction. Thus given a physical
quantity at mid-rapidity (ηs = 0), one can determine this quantity at all other
rapidities by a longitudinal boost. We will use curvilinear coordinates where81

xµ = (τ,x⊥, ηs) , gµν = diag(−1, 1, 1, τ2) , (uτ , ux, uy, uη) = (1, 0, 0, 0) .
(41)

In this coordinate system boost invariance implies that everything is indepen-
dent of ηs. To interpret a tensorial component in these coordinates, we multiply
by

√
gηη = τ for every raised ηs index, and subsequently associate the prod-

uct with the corresponding cartesian component at mid-rapidity. For example,
τ2T ηη = T zz|ηs=0 = P . Similarly, τuη = uz|ηs=0 = 0 for boost invariant flow.

Substituting the boost invariant ansatz (Eq. (40)) into the conservation laws
yields the following equation for the energy densityc

de

dτ
= −e + P

τ
. (42)

cA quick way to derive this is to work in a neighborhood of z = ηs = 0 where uz ! z/t. Substituting
this approximate form into ∂µT µν = 0 in cartesian coordinates, quickly yields Eq. (42) with the
replacement t → τ .

1d hydro (Bjorken model):  
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the equations of motion are

∂µT µν = 0 , πµν = −ησµν , Π = −ζ∇µuµ , (52)

where η and ζ are the shear and bulk viscosities respectively, and we have defined
the symmetric traceless combination

σµν = ∇µuν + ∇νuµ − 2

3
∆µν∇λuλ . (53)

For later use we also define the bracket 〈. . .〉 operation

〈Aµν〉 ≡ 1

2
∆µα∆νβ (Aαβ + Aβα) − 1

3
∆µν∆αβAαβ , (54)

which takes a tensor and renders it symmetric, traceless and orthogonal to uµ. Note
that σµν = 2 〈∂µuν〉.

We now extend the Bjorken model to the viscous case following Ref.13. The
bulk viscosity is neglected in the following analysis and we refer to Section 3 for
a more complete discussion. Substituting the Bjorken ansatz (Eq. (40)) into the
conservation laws and the associated constituent relation (Eq. (52)) yields the time
evolution of the energy density

de

dτ
= −

e + P − 4
3η/τ

τ
. (55)

The system is expanding in the z direction and consequently the pressure in the z
direction is reduced from its ideal value. Formally this arises due to the gradient
∂zuz = 1/τ and the constituent relation Eq. (52)

T zz = P − 4

3

η

τ
. (56)

Thus during a viscous Bjorken expansion the system will do less longitudinal work
than in the ideal case.

4.4. The Applicability of Hydrodynamics and η/s

Comparing the viscous equation of motion Eq. (55) to the ideal equation of motion
Eq. (42), we see that the hydrodynamic expansion is controlled by

η

e + P
1

τ
& 1 . (57)

This is a very general result and is a function of time and temperature. Using the
thermodynamic relation e + P = sT , we divide this condition into a constraint on
a medium parameter η/s and a constraint on an experimental parameter 1/τT

η

s
︸︷︷︸

medium parameter

× 1

τT
︸︷︷︸

experimental parameter

& 1 . (58)

If the experimental conditions are favorable enough, it is appropriate to apply
hydrodynamics regardless of the value of η/s. This is the case for sound waves in air

1d hydro: 

Hydrodynamics works when viscous corrections are small :  
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η
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This is a very general result and is a function of time and temperature. Using the
thermodynamic relation e + P = sT , we divide this condition into a constraint on
a medium parameter η/s and a constraint on an experimental parameter 1/τT

η

s
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× 1

τT
︸︷︷︸

experimental parameter

& 1 . (58)

If the experimental conditions are favorable enough, it is appropriate to apply
hydrodynamics regardless of the value of η/s. This is the case for sound waves in air
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Hydrodynamic models in heavy ion collisions (cont’d) 

Hydro models: 

1) Specify initial conditions, e.g. 
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The strains are taken from the Navier stokes theory for example

πµν(τo,x⊥) = diag
(

πττ , πxx, πyy, τ2πηη
)

=

(

0,
2

3

η

τ
,

2

3

η

τ
, −4

3

η

τ

)

, (114)

and reflect the traceless character of shear stress.
(2) The equations of motion are then solved. Viscosity modifies the hydrodynamic

variables, T and uµ, and also modifies off diagonal components of the stress
tensor through the viscous corrections πµν .

(3) A “freezeout” condition is specified either by specifying a freezeout temper-
ature or a kinetic condition. During the time evolution a freezeout surface is
constructed. For instance the freezeout surface in Fig. 15 is the space-time three
volume Σ where Tfo " 150 MeV.

(4) Finally, in order to compare to the data, particle spectra are computed by
matching the hydrodynamic theory onto kinetic theory. Specifically, on the
freezeout surface final particle spectra are computed using Eq. (125). Roughly
speaking this “freezeout” procedure is equivalent to running the hydro up to
a particular proper time τf or temperature Tf and declaring that the thermal
spectrum of particles at that moment is the measured particle spectrum.

There are many issues associated with each of these items. The next subsections
will discuss them one by one.

6.1. Initial Conditions

First we note that the hydrodynamic fields are initialized at a time τ0 " 1 fm/c,
which is arbitrary to a certain extent. Fortunately, both in kinetic theory and
hydrodynamics the final results are not particularly sensitive this value 104,31.
Also, all of the current simulations have assumed Bjorken boost invariance. While
this assumption should be relaxed, past experience with ideal hydrodynamics shows
that the mid-rapidity elliptic flow is not substantially modified18. Above we have
discussed one possible initialization of the hydro which makes the energy density
proportional to the number of binary collisions, e.g. the Glauber curves of Fig. 15.
Another reasonable option is to make the entropy proportional to the number of
participants 10

s(τ0,x⊥) ∝ dNp

dxdy
. (115)

As a limit one can take the CGC model discussed in Section 2. Finally it is generally
assumed that the initial transverse flow is zero

ux(τ0,x⊥) = uy(τ0,x⊥) = 0 . (116)

This assumption should probably lifted in future calculations and a more reasonable
(but still small) estimate is given in Ref.105.

Examining Fig. 15 and Fig. 7 we see see that there is a significant and pre-
dictable linear dependence on the eccentricity. When extracting the shear viscosity

fix constant to match the observed multiplicity 
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Fig. 15. Figure from Ref.31 which shows how elliptic flow depends on shear viscosity. The theory
curves are most dependable for pT <∼ 1.5GeV and should be compared to the “non-flow corrected”
data. The Glauber and CGC initial conditions have different eccentricities as described in the text.

where the overall constant is adjusted to reproduce the multiplicity in the event.
The simulations assume Bjorken boost invariance with the ansatz

e(τ,x⊥, η) ≡ e(τ,x⊥) , (111)

uµ(τ,x⊥, η) = (uτ , ux, uy, uη) = (uτ (τ,x⊥), ux(τ,x⊥), uy(τ,x⊥), 0) . (112)

In cartesian coordinates uz = uτ sinh(ηs) and ut = uτ cosh(ηs). The calcula-
tions typically assume zero transverse flow velocity at the initial time τo

ux(τo,x⊥) = uy(τo,x⊥) = 0 , uτ (τo,x⊥) = 1 . (113)

2) Solve hydrodynamic equation  

3) Stop hydro at the freeze-out temperature Tf ~ 150 MeV and caclulate the freezout surface  
    in space-time 
 
4) Calculate particle distributions by matching hydro calculations to kinetic theory and 
freeze-out surface 
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drodynamics or with the kinetic theory of a Hadron Resonance Gas (HRG). In
reality this does not seem particularly likely since the system is already expanding
three dimensionally and the scales are approximately fixed (see Section 4.5). The
estimates of the shear viscosity to entropy ratio in a hadronic gas are reliable for
T <∼ 130 MeV and do not support this optimistic picture (see Section 3). In seems
quite unlikely that there is equilibrium evolution in the HRG below a temperature of
T " 150 MeV. Clearly the dynamics is extremely complex during the quark-hadron
transition which takes place for an energy density of e " 0.5 ↔ 1.2 GeV/fm3. In
this range, the temperature changes by only ∆T " 20 MeV. However, the hydro-
dynamic simulations evolve this complicated region for a significant period of time,
τ " 4 fm ↔ 7 fm. This transition region can be seen from the inflection in the AuAu
plots in Fig. 18.

The pragmatic approach to this complexity is to compute the quasi-particle
spectrum of hadrons at a temperature of T " 150 MeV. Since the HRG describes the
QCD thermodynamics well, this pragmatism is fairly well motivated. The approach
conserves energy and momentum and when viscous corrections are included also
matches the strains across the transition. In ideal hydrodynamics simulations the
subsequent evolution of the hadrons has been followed with hadronic cascade models
22,19,18. The result of these hybrid models is that the hadronic rescattering is
essentially unimportant for the v2(pT ) observables presented here.

Technically, the procedure is the following: along the freezeout surface the spec-
trum of particles is computed with the Cooper-Frye formula

E
dNa

d3p
=

da

(2π)3

∫

Σ
dΣµPµ fa(−P · u/T ) , (125)

where a labels the particle species, the distribution function is,

fa(−P · u) = na(−P · u/T ) + δfa(−P · u/T ) , (126)

and da labels the spin-isospin degeneracy factor for each particle included (see
Section 5). In practice, the Boltzmann approximation is often sufficient. In Ref.31

all particles were included up to mass of mres < 2.0 GeV and then subsequently
decayed. In other works a simple single species gas was used to study various aspects
of viscous hydrodynamics divorced from this complex reality10,11.

All of the viscous models used the quadratic ansatz discussed in Section 5,
writing the change to the distribution function of the a-th particle type as

fa → na + δfa , (127)

with δfa given by

δfa =
1

2(e + P)T 2
na(1 ± na)PµP νπµν . (128)

Before continuing we review the elements that go into a complete hydrodynamic
calculation. First initial conditions are specified (see Section 6.1) ; then the equa-
tions are solved with the viscous term (see Section 6.2) ; after this a freezeout surface
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LHC energies [20]. The agreement with experimental results from LHC shown in
Fig. 6 is particularly striking.
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Fig. 6. Left: Root-mean-square anisotropic flow coe�cients hv2ni1/2 in the IP-Glasma model [20],
computed as a function of centrality, compared to experimental data of vn{2}, n 2 {2, 3, 4},
by the ALICE collaboration [182] (points). Right: Root-mean-square anisotropic flow coe�cients
hv2ni1/2 as a function of transverse momentum, compared to experimental data by the ATLAS
collaboration using the event plane (EP) method [22] (points). Bands indicate statistical errors.

This agreement indicates that initial state fluctuations in the deposited energy
density, translated by hydrodynamic evolution into anisotropies in the particle pro-
duction, are the main ingredient to explain the measured flow coe�cients.

Because of this feature, some e↵ort has been concentrated on characterizing the
initial state in a way that ties it directly to the measured flow. The simplest way of
doing so is to compare the initial eccentricities of the system

"n =

p
hrn cos(n�)i2 + hrn sin(n�)i2

hrni (13)

to the final flow harmonics vn. However, in particular for v
4

and higher harmonics,
the nonlinear nature of hydrodynamics becomes important [183] and more accurate
predictors for flow coe�cients involve both linear and nonlinear terms, e.g. v

5

has
contributions from "

5

and "

2

"

3

, and it was shown [184] that the nonlinear term
becomes more dominant with increasing viscosity.

The fact that linear terms are damped more by viscosity leads to a growing
correlation of di↵erent event planes

 n =
1

n

arctan
hsin(n�)i
hcos(n�)i , (14)

with increasing viscosity [184], a result that is in line with findings in a di↵erent
work [185], where experimental data on event plane correlations from the ATLAS
collaboration [186] was compared to hydrodynamic calculations in di↵erent scenar-
ios.

State of the art hydrodynamic model 

1)  Take into account higher order harmonics 
2)  More realistic initial conditions based on gluon saturation (IP-glasma) 
3)  3D viscous hydrodynamics 

Schenke et al 

The matter is more viscous at higher collisions energy as the temperature is higher  
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Figure 2: The viscosity-entropy ratio for some common substances: helium, nitrogen and

water. The ratio is always substantially larger than its value in theories with gravity duals,

represented by the horizontal line marked “viscosity bound.”

experimentally whether the shear viscosity of these gases satisfies the conjectured bound.

This work was supported by DOE grant DE-FG02-00ER41132, the National Science

Foundation and the Alfred P. Sloan Foundation.
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dependences assumed for the expanding matter. Our
study reveals that the invariance of v2(pT ) at varying
colliding energies means that the η/s(T ) has a typical
”U” shape with a decreasing behavior from the hadronic
matter and a not too steep rise with temperature in the
QGP.
Transport at fixed η/s - We have developed in the

recent years a Relativistic Boltzmann Transport (RBT)
approach that, instead of focusing on specific microscopic
calculations or modelings for the scattering matrix, fixes
the cross section in order to have the wanted η/s. This is
not the usual approach to transport theory that is gener-
ally employed by starting from cross sections and mean
fields derived in microscopic models. The motivation for
our approach is inspired by the success of the hydrody-
namical approach that has shown the key role played by
the η/s. Therefore on one hand we use the RBT equation
as an approach converging to hydrodynamics for small
scattering relaxation time τ ∼ σρ (small η/s). On the
other hand the RBT equation is naturally valid also at
large η/s or pT >> T (explored in the present work) in
contrast to hydrodynamics, and avoids uncertainties in
the determination of the viscous correction, δf , to the
distribution function f(x, p), that usually becomes quite
large at pT > 1.5GeV [31].
To study the expansion dynamics with a certain

η/s(T ), we determine locally in space and time the
total cross section σtot according to the Chapmann-
Enskog theory. For a pQCD inspired cross section,
dσ/dt ∼ α2

s/(t−m2
D)2, typically used in parton cascade

approaches [8, 10, 32–36], this gives:

η/s =
1

15
〈p〉 τη =

1

15

〈p〉
g(a)σtotρ

, (1)

where a = mD/2T , with mD being the screening mass
regulating the angular dependence of the cross section
σtot, while g(a) is the proper function accounting for the
pertinent relaxation time τ−1

η = g(a)σtotρ associated to
the shear transport coefficient and given by:

g(a) =
1

50

∫

dyy6
[

(y2+
1

3
)K3(2y)−yK2(2y)

]

h

(

a2

y2

)

,(2)

with Kn-s being the Bessel functions and the function
h is relating the transport cross section to the total one
σtr(s) = σtot h(m2

D/s) and h(ζ) = 4ζ(1+ζ)
[

(2ζ+1)ln(1+
1/ζ)− 2

]

.
The maximum value of g, namely g(mD → ∞) = 2/3,

is reached for isotropic cross section and Eq.(1) reduces
to the relaxation time approximation with τ−1

η = τ−1

tr =
σtrρ. We have shown in Ref. [37] that Eq.(1) correctly
describes the η/s of the system in the range of interest
and it is in good agreement with the Green-Kubo for-
mula. We notice that in the regime where viscous hydro-
dynamics applies the specific microscopic details of the
cross section are irrelevant, and ours is the only effective
way to employ transport theory to simulate a fluid at a
given η/s.

We solve the RBT equation with the constraint that
η/s(T ) is fixed during the dynamics of the collisions in a
way similar to [38], but with an exact local implementa-
tion as described in detail in [8]. From Eq.(1) the cross
section σtot(ρ, T ) determining the wanted value η/s is
given by:

σtot =
1

5

T

g(T/mD)ρ

1

η/s
(3)
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FIG. 1: Different temperature dependent parametrizations for
η/s. The orange area takes into account the quasi-particle
model predictions for η/s [39]. The different lines indicate
different T dependencies assumed in the simulation of heavy-
ion collision. Symbols are as in the legend. See the text for
more details.

In our calculation the initial condition is longitudi-
nal boost invariant flow, but the dynamical evolution is
3D+1. For studying v2 this approximation is adequate,
although for other collective flow phenomena, like rota-
tion or turbulence [40, 41] more realistic initial conditions
would be necessary. The initial dN/dη have been chosen
in order to reproduce the final dNch/dη(b) at mid rapid-
ity as observed in the experiments at RHIC and LHC
energies [27, 42]. The partons are initially distributed
according to the Glauber model in coordinate space. In
the momentum space the distribution is thermal up to
pT = 2GeV and at larger pT we include the spectrum
of non-quenched minijets according to standard NLO-
pQCD calculations. In order to fix the maximum tem-
perature in the center of the fireball, Tm0, we assume
that it scales with the collision energy according to the
relation

1

τAT

dNch

dη
∝ T 3 , (4)

and for the initial time, τ0, we ensure that it satisfies the
uncertainty relation between the initial average thermal
energy and the initial time by Tm0τ0 ≈ 1. Combining
these two relations one has

T (
√
s1)

T (
√
s2)

=

√

dNch/dη(
√
s1)

dNch/dη(
√
s2)

(5)

How small  is the shear viscosity ?  

Validity of the hydrodynamics is governed by η/s 
Hadron gas and QGP at very high temperature have large value η/s  
 
Super-symmetric gauge theories at strong coupling  have small η/s with lower bound 
dictated by quantum mechanics η/s>1/(4 π) (Kovtun, Son Starinets 2005) 
⇒ QGP near the transition temperature Tc has close to minimal η/s  
 

Extremely difficult to calculate in LQCD !  
However, other transport coefficients are easier to calculate   

Kovtun, Son Starinets, 2005 Csernai et al, 2013 
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RHIC = 0.30  

LHC=RHIC= 0.30  LHC = 0.27  

Estimate of jet-medium coupling reduction at LHC

Energy loss and jet suppression 
Energetic partons loose 
energy due to: 
 
Ellastic scaterring with 
the constituents of the medium 

…. 
x x x 

…. 
x x x 

Medium induced radiation 

Fewer partons t large pT   suppression of RAA; The observed suppression implies  
Large number of scattering centers => deconfined medium  

Physics at the light cone, not accessible to LQCD 



Confined 

Deconfined 

r 

V(r) 

Matsui and Satz PLB 178 (86) 416 

T/TC 1/〈r〉 [fm-1] 

ϒ(1S) 

J/ψ(1S) 

χc(1P) 

Ψ’(2S) 

χb’(2P) 

Υ’’(3S) 

Quarkonium suppression  

Melting depends 
on the binding 
energy 
 
 
 
QGP 
thermometer 



Strongly coupled QGP and heavy quarks  

⇒ Langevin dynamics: 
 

Heavy quarks ( Mc ~ 1.5 GeV ) flow in the strongly coupled QGP 

Analogy from Jamie Nagle 



Thermal dileptons : 
 direct measurement of the temperature of 
 the produced matter, melting of the rho meson, 
test consequences of chiral  
symmetry restoration 

Thermal photons and dileptons 

Tave = 221 ± 19stat ± 19syst MeV 

Thermal photons: analog of black body 
radiation  

PRL104,132301(2010), arXiv:0804.4168	




•  Bulk particle spectra 

•  Thermal photons and dileptons 

Lattice QCD at T>0 and RHIC 

•  Heavy quark bound states  

•  Spatial correlation functions, 
  heavy quark potential  

•  Temporal correlation functions,  
   spectral function, transport coefficients  

•  Transition temperature,  
equation of state,  susceptibilities  

 
 

LQCD 

RHIC (STAR) 



In this lecture series: 
 
1) Introduction 

2) Basics of field theory at T>0 

3) Basics of Lattice QCD: the Wilson actions, fermion formulations,  
Improved actions, HMC, meson correlation functions  
 
4)  Lattice QCD at T>0: EoS and the integral method, chiral transition, center symmetry and  
color screening, free energy of static quarks 
 
5) Thermodynamics at low T, chiral perturbation theory and Hadron resonance gas model 
 
6) Fluctuations of conserved charges in lattice QCD and experiment and the deconfinement 
Transition 
 
7)  Meson correlation functions, quarkonium properties at T>0 and quarkonium suppression, 
thermal photons and dileptons 
 
  Lectures posted at  
http://quark.phy.bnl.gov/~petreczk/presentations/Bielefed_lectures/ 
For questions see me in my office, E6-124 
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