
Lecture 5-6: Chiral and deconfinement transition in QCD and 
the properties of matter at low and high temperatures 

Effective field theory approach 
 
Effective theories at low temperatures (chiral perturbation theory) 
 
Chiral transition and axial symmetry restoration 
 
Center symmetry, deconfinement transition, color screening 
 
High temperature QCD: perturbation theory, magnetic screening, dimensional  
reduction, hard-thermal loop effective theory 
 
Virial expansion and hadron resonance (HRG) model 
 
Taylor expansion of the pressure and fluctuations of conserved charges 
 
 



Effective field theories  
Try to describe the physics of low momentum modes ( p < Λ ) in terms of the relevant dof only: 

How to calculate the effective action ? 

1)  Perform the function integral in perturbation theory (partial path integration) difficult ! 
2)  Matching: write down the most general form of the effective Lagrangian as sum of 

different operators                                   consistent with the symmetries of the original theory 
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Linear sigma model and chiral perturbation theory  
Goal to describe physics at scale < pion mass <<  ΛQCD  (for sufficiently small quark  
mass)  taking into account spontaneous breaking of chiral symmetry  
Linear sigma model  

Invariant under chiral rotations for h~mq=0:  

� $  ̄ , ~⇡ $  ̄i~⌧�5 , � = ~b · ~⌧�5 /2
Useful for the discussion at T>0 and restoration of the chiral symmetry 
Problem:  mσ ≈ 400 MeV ~ ΛQCD no well-defined power counting in a small parameter 
Only two parameters λ and v, cannot describe the experimental data => additional operators ?? 

Chiral perturbation theory (non-linear signa model ) : 
Use only pion fields and chiral symmetry  
 
Expansions in powers p2/F2, (mπ/F)2    , F ~ ΛQCD

 

Leff = L(2) + L(4) + L(6) + ....

Kinetic term is invariant under the chiral rotation and the mass term transforms like the quark  
mass term in the QCD Lagrangian  
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Next-to-leading ~p4/F4 order:  

At leading order in 1/F2 expansion we recover the Lagrangian for massive pions, but 
interactions are proportional to p2  ( expand U in 1/F ) but operators 
with d>4 => the effective theory is non-renormalizable,  
                    but no IR divergences ~p2/F 2 

P. Gerber, H. Leutwyler / Hadrons below the chiral phase transition 
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Fig. 1. Feynman graphs occurring in the low temperature expansion of the partition function to order 
T 8. The numbers attached to the vertices refer to the piece of the effective lagrangian they come from: 
the symbol U '  e.g. denotes a vertex generated by L ~4). Vertices associated with the leading term L t2) are 

represented by a dot. 

Us ing  this relation, one obtains 

z6a = 3 M 2 ( G  )2 /8F2  

Zsa = - 25MZ(G1)3/48F 4. 

(2.6) 

(2.7) 

The  three-loop graph 8b involves an integral over the torus T defined by - i l l 2  <~ 
X 4 ~ j ~ / 2 ,  

c2 = fTddx I t (x)]  2. (2.8) 

This integral can be expressed in terms of the derivative of  the propagator  with 
respect  to the mass 

G 2 

In  terms of  this quantity,  we have 

dG 1 
d M  2 . (2.9) 

z,b = M2( G1)2(8Ga - 3MZG2)/16F 4. (2.10) 
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for massless pions 
Hadronic interatcions are weak 
at low T, T<F but increase with 
Increasing temperature  

Is the expansion applicable in  practice ?  
F ' F⇡ ' 90 MeV

Yes ! The true expansion parameter  
in the loop expansion is  
1/(4⇡F ) ⇠ 1/⇤� ⇠ 1GeV �1

Not applicable close to the chiral transition 

Gerber, Leutwyler, ‘89 



 
 

The chiral condensate and chiral susceptibility  

HotQCD : Phys. Rev. D85 (2012) 054503; Bazavov, PP, PRD 87(2013) 094505 
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Need renormalization 

How to define the chiral transition temperature ? 
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 O(N) scaling and the chiral transition temperature  

For sufficiently small ml and in the vicinity of the transition temperature:   

governed by universal O(4) scaling  

Tc
0 is critical temperature in the mass-less limit, h0 and t0  are scale parameters  

Pseudo-critical temperatures for non-zero quark mass are defined as peaks in the 
response functions ( susceptibilities) : 
 
 

= = =  Tc
0 

in the zero quark mass limit 

universal scaling function has a peak at z=zp Caveat : staggered fermions  O(2) 
ml →0, a > 0,  
proper limit a →0, before ml → 0 



 O(N) scaling and the transition temperature    
The notion of the transition temperature is only useful if it can be related to the critical 
temperature in the chiral limit : fit the lattice data on the chiral condensate with scaling  
form + simple Ansatz for the regular part  

6 parameter fit : Tc
0, t0, h0, a1, a2, b1  



Domain wall Fermions and UA(1) symmetry restoration   

chiral: axial:  

Domain Wall Fermions, Bazavov et al (HotQCD), PRD86 (2012) 094503  

axial symmetry is effectively restored T>200 MeV ! 
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Peak position roughly agrees with 
previous staggered results 



Lattice set-up:  

Center symmetry and deconfinement transition 
Above the phase transition temperature Z(3) (center) symmetry of SU(3) gauge theory is broken 
Quarks transform non-trivially under Z(3) symmetry group 
=>  static charges in fundamental representations can be screened by gluons ! 

The free energy of static quark is infinite in the  
Continuum limit due to linear 1/a divergence => needs renormalization 



•  Use different volumes and Ferrenberg-Swedsen re-weighting to combine  
  information collected at different gauge couplings  
Finite volume behavior can tell the order of the phase transition, e.g. for 1st 

order transition the peak height scales as spatial volume ! 

Boyd et al., Nucl. Phys. B496 (1996) 167  

How to determine the deconfinement transition temperature ?  

Necco, Nucl. Phys. B683 (2004) 167 



Continuum  limit for L ?  

needs renormalization ! 

Dumitru et al, hep-th/0311223 



Free energy of static quark anti-quark pair and other correlators 

McLerran, Svetitsky, PRD 24 (81) 450 



analog of the Wilson loop at 
T=0 



Kaczmarek, Karsch, P.P., Zantow,  
hep-lat/0309121   

Jahn, Philipsen,  
PRD 70 (04) 0074504 
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The renormalized Polyakov loop in pure glue theory 

Kaczmarek et al, PLB  543 (02) 41,  PRD 70 (04) 074505, hep-lat/0309121 



Kaczmarek, Phys.Rev.D62 (00) 034021  

Correlation length near the transition  

small inverse correlation length => weak 1st order phase transition 
QCD is far from the large N-limit ! 



Singlet free energy and Polyakov loop in 2+1 flavor QCD   

Pure glue ≠ QCD ! 
 
Deconfinement transition happens  
at lower temperature but the  
Polyakov loop behaves smoothly 
around Tc  , Z(3) symmetry plays 
 apparent role 

The free energy of static  
quark anti-quark pair is screened already 
at low temperature (even at T=0) => 
string breaking 



Polyakov and gas of static-light hadrons  

Energies of static-light mesons: 

Megias, Arriola, Salcedo,  
PRL 109 (12) 151601 
 
Bazavov, PP, PRD 87 (2013) 094505 
 
 
Ground state and first excited states 
are from lattice QCD 
Michael, Shindler, Wagner, 
arXiv1004.4235 
Wagner, Wiese,  
JHEP 1107 016,2011 
 
Higher excited state energies 
are estimated from potential model  

Gas of static-light mesons 
only works for T < 145 MeV 

 100

 200

 300

 400

 500

 600

 120  140  160  180  200
T [MeV]

FQ(T) [MeV] HISQ
stout

Free energy of an isolated static quark:   



Gulon self energy and color screening in perturbation theory 



Arnold, Zhai,  Phys.Rev. D51 (1995) 1906, Kastening, Zhai, Phys.Rev. D52 (1995) 7232   

QCD  at high temperatures  

Bosonic contribution: 

Fermionic contribution: 

Static resummation: 
 
 

1

2
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Arnold, Zhai,  Phys.Rev. D51 (1995) 1906, Kastening, Zhai, Phys.Rev. D52 (1995) 7232   



Kajantie et al, Phys. Rev. D 67 (2004) 105008 

very poor convergence ! 



Pressure at order g6 and magnetic mass  



Dimensional reduction at high temperatures   

Braaten, Nieto, PRD 51 (95) 6990, PRD 53 (96) 3421 
Kajantie et al, NPB 503 (97) 357, PRD 67 (03) 105008 

EQCD 

Integrate out A0 

MQCD 3d YM theory 

F3d ~ g3
6 

Fµ⌫ = DµAµ �D⌫Aµ

Aµ ! �1/2Aµ

F = F(non-static) + T F3d 



   Spatial string tension at  T>0 and dimensional reduction 

non-perturbative 

Calculated   perturbatively 

Laine, Schröder, JHEP0503(05) 067  

Cheng et al., Phys.Rev.D78 (08) 034506  

EQCD :  

magnetic  screening 



  Pressure and screening mass in the 3d effective theory 
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Figure 6: Left: the best fit of our result to 4d lattice data for p/T 4 at Nf = 0 [28]. Our result comes
out as a function of T/ΛMS; for converting to T/Tc we scanned the interval Tc/ΛMS = 1.10 . . .1.35
(dark band). For comparison, with the light band we show the outcome for FR

MS
≡ 0 [29]. Right: the

corresponding trace anomaly, (e − 3p)/T 4 = Td(p/T 4)/dT .

physical stripe of Fig. 1. Comparing with the lower order terms in Eq. (A.1), Eq. (4.2) also

has a reasonable magnitude, and indicates that perturbation theory within EQCD is in fact a

useful tool at all parameter values corresponding to the 4d theory. In principle, the numerical

result could also be compared with improved resummation methods defined within EQCD

(see, e.g., refs. [31]–[33]).

At the same time, from the phenomenological point of view, our result is somewhat of a

disappointment: as shown in Fig. 6, the match to 4d lattice data in the range T/Tc ≥ 3.0 is

not particularly smooth. In fact, as shown in the figure, including the newly determined ≥ 5-

loop remainder decreases the quality of the fit significantly. This implies that, unfortunately,

we are not in a position to realize our original goal of offering consolidated crosschecks for

the Nf $= 0 QCD pressure in the interesting temperature range T/Tc ∼ 1.5 . . . 3.0.

On the other hand, our study raises the theoretical question of what kind of effects could

be responsible for the mismatch between our results and that of 4d lattice simulations. On

the mundane side, one possibility would be a substantial contribution from the condensate

denoted by ∂xFMS = 〈(Tr [Â2
0])

2〉a − ... . Unfortunately its systematic inclusion would

require a significant amount of new analytic and numerical work; moreover, as order-of-

magnitude estimates and previous preliminary simulations suggest, it appears unlikely that

this condensate could significantly change the qualitative behaviour that we have observed.

On a more adventurous note, let us point out that, qualitatively, the reason for the mis-

match is that the condensate in Eq. (4.1) is too large, and grows rapidly as y (or T ) de-

creases (note that for Nf = 0, the range T/Tc = 100...103 corresponds to y ( 0.3...1.2, or
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FIG. 16. The electric screening masses in units of the temperature. Shown are the electric masses mE for the first (filled

circles) and the second (open circles) set of h. The line represent the fit for the temperature dependence of the electric mass
from 4d simulations. The open triangles are the values of the electric mass for h values obtained from perturbative reduction
in the metastable region (the last column in Table III). Some data points at the temperature T ∼ 70Tc and T ∼ 9000Tc have
been shifted in the temperature scale for better visibility.

As one can see from the figure the agreement between the masses obtained from 4d and 3d simulation is rather
good. The electric mass shows some dependence on h. For relatively low temperatures (T < 50Tc) the best agreement
with the 4d data for the electric mass is obtained for values of h corresponding to 2-loop dimensional reduction and
lying in the metastable region. This fact motivated our choice of the parameters of the effective theory at T = 2Tc in
section III. For higher temperatures, however, practically no distinction can be made between the three choices of h.

Before closing the discussion on the choice of the parameters of the effective 3d theory let us compare our procedure
of fixing the parameters of the effective theory with that proposed in [9]. In Ref. [9] the gauge coupling was fixed
by matching the data on Polyakov loop correlators determined in lattice simulation to the corresponding value
calculated in lattice perturabtion theory. The resulting gauge couplings turned out to be considerably smaller than the
corresponding ones used in our analysis, e.g. for T = 2Tc it gave g2 = 1.43 while our procedure gives g2(2Tc) = 2.89.
The scalar couplings were fixed according to 1-loop perturbation theory [9]. Using this procedure the authors of Ref.
[9] obtained a good description of the Polyakov loop correlator in terms of the 3d effective theory, however, the spatial
Wilson loop whose large distance behavior determines the spatial string tension was not well described in the reduced
3d theory. The reason for this is the fact that the value of the Polyakov loop correlator is cut-off dependent and
therefore it is not very useful for extracting the renormalized coupling.
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Pressure in 3d theory 
Kajantie et al, 2009 

Electric screening mass 
Cuchieri et al, 2001   

Line is the fit to the 4d lattice results. 
Different symbols correspond to 
different choices of the 3d mass 
parameter 



  Pressure and trace anomaly in HTL perturbation theory  
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FIG. 12. Comparison of the HTL entropy (full lines), the NLA results for cΛ = 1
2 . . . 2

(dash-dotted lines) as well as cΛ = 1
4 . . . 4 (gray dash-dotted lines), and the free entropy of bosons

with mass (5.13) such as to reproduce the correct perturbative plasmon effect (dotted lines), all
with MS renormalization scale µ̄ = πT . . . 4πT , with the lattice result of Ref. [40] for pure SU(3)

gauge theory (dark-gray band).

Putting µ̄ = cµ̄2πT in Eq. (5.14) and assuming cµ̄ ∼ 1 prescribes reasonably small values
for αs and thus for m̂D/(2πT ) and M̂/(πT ) for all T > Tc so as to make it interesting
to compare the above HTL and NLA expressions with nonperturbative results from lattice
gauge theory. Indeed, we have found that, for m̂D " 2πT and M̂ " πT , the deviation
from the free Stefan-Boltzmann result is small enough to make a semi-perturbative picture
minimally tenable, although it is clear that the physics of the phase transition itself is
completely beyond reach. On the other hand, the strictly perturbative results up to and
including the order g3 are such that entropy and pressure would be much higher than
their Stefan-Boltzmann values, indicating a complete loss of convergence of strict thermal
perturbation theory.

In order to have some indication of the theoretical uncertainty involved, we consider,
again as done in Ref. [11], a variation of the renormalization scale by a factor of cµ̄ = 1

2 . . . 2.
For purely gluonic QCD, the lattice results involve the least uncertainties. In Ref. [40], the

thermodynamic potentials of pure SU(3) gauge theory have been calculated from plaquette
action densities on lattices up to 8×323 for temperatures up to about 4.5Tc and extrapolating
to the continuum limit by comparing different lattice sizes. The lattice result for the entropy
density is rendered in Fig. 12 by a grey band whose thickness is meant to give a rough idea
of the errors reported in Ref. [40].

Our result for the HTL entropy as displayed in Fig. 7 translates into a range of values
bounded by the choices µ̄ = πT (lower full line) and µ̄ = 4πT (upper full line). This
already gives a remarkably good approximation of the lattice result for T >∼ 2Tc, somewhat
underestimating the values at higher temperatures. In all of this the parameter m̂D/T takes
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FIG. 3. NNLO HTLpt result for the Nf = 3 QCD trace anomaly over temperature squared

compared with lattice data from the Wuppertal-Budapest [25], hotQCD [26, 27], and RBC-Bielefeld

[28, 29] collaborations. For both HTLpt curves the renormalization scale was taken to be µ = 2⇡T .

much lower temperatures. This discrepancy could be due to their fixed scale approach not

having su�ciently large N⌧ at high temperatures as noted in their paper [30].

In Fig. 3 we present the Nf = 3 QCD NNLO HTLpt prediction for (E � 3P)/T 2 and

compare to lattice results available from the Wuppertal-Budapest [25] and hotQCD col-

laborations [26, 27]. The lattice data from the Wuppertal-Budapest collaboration uses the

stout action and have been continuum estimated by averaging the trace anomaly measured

using their two smallest lattice spacings corresponding to N⌧ = 8 and N⌧ = 10. The lattice

data from the hotQCD collaboration are their N⌧ = 8 results using the asqtad, p4, and

HISQ actions which have not been continuum extrapolated [26, 27]. The lattice data from

the RBC-Bielefeld collaboration is N⌧ = 6 and have also not been continuum extrapolated

[28, 29].

As before, we present HTLpt results using both one- and three-loop running of the

7

Andersen et al, 2011 



  Free energy of a static quark anti-quark pair at high T 



Static quark anti-quark free energy  in 2+1f QCD 

•  The strong T-dependence for T<200 MeV  
is not necessarily related to color screening 
 
•  The free energy has much stronger  
T-dependence than the singlet free energy 
due to the octet contribution 
 
•  At high T the temperature dependence 
of the free energy can be entirely understood 
in terms of F1 and Casimir scaling F1=-8 F8 



Static quark anti-quark free energy  in 2+1f QCD (cont’d) 
Leading order weak coupling : 

Screening function:  



Virial expansion and Hadron Resonance Gas  

Chiral perturbation theory is limited to pion gas. Other hadrons, resonances ? 
Relativistic virial expansion : compute thermodynamic quantities in terms 
as a gas of non-interacting particles and S – matrix 
Dashen, Ma, Bernstein, ‘69 

lnZ = lnZ0 +
X
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Elastic scattering only (final state = initial state)   

Free gas interactions 
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perform the integral over the 3-momentum  

Partial wave 
decomposition 
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invarian mass of the pair at threshold 



Use  experimental phase shifts to determine b2  , Venugopalan, Prakash ‘92 726 R. Venugopalan, M. Prakash /Thermal properties 
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Fig. I. Upper panel: ~t~t phase shifts as a function of center of mass momentum. Lower panel: 
Isospin-weighted sum of the phase shifts. 

with the corresponding variables for a free gas of pions and p-mesons. The reason for 
this was the nearly exact cancellation of the contributions from the S-wave attractive 
and repulsive channels which resulted in an effective contribution from the P-wave 
channel containing the p-meson resonance. The magnitudes of the S-wave phase shifts 
are such that their isospin-weighted sum nearly vanishes as shown in the lower panel of 
fig. 1. This cancellation, of dynamic origin, may be explicitly verified 20) on the basis 
of the low-energy phase shifts from the Weinberg chiral lagrangian 42). It is remarkable 
that the cancellation persists up to rather high c.m. energies. 

The interacting pressure expressed as the sum of contributions P~) and p(2) from " i n t  " i n t  

terms linear and quadratic in the scattering amplitude using eqs. (6) - (8)  are shown 
in fig. 2. In the upper panel we show the individual contributions to the interacting 
pressure from the resonant J~ phase shift. Virtually the entire contribution to the 
pressure comes from the resonant channel, i.e from p~2) _ the term quadratic in the - l n t  

scattering amplitude f ,  since near the resonance f is almost purely imaginary. 
The result is very different for the non-resonant channels (see the lower panel 

in fig. 2). The repulsive J0 2 phase shift remains relatively small in magnitude with 
energy and therefore f is almost purely real. Hence, the dominant contribution to the 
interacting pressure comes from P t~ - the term proportional to the real part of the ~ i n t  

forward scattering amplitude, in contrast, the magnitude of Jo ° becomes increasingly 
|arge with energy so that both the real and the imaginary parts of f are comparable. 

728 R, Fenugopalan. M. Prakosh / Thermal properties 
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and p-mesons. 
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Fig. 4. Upper panel: nK phase shifts as a function of center-of-mass momentum. Lower panel 
isospin-weighted sum of the phase shifts. 
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Interacting hadron gas = non-nteracting gas of hadrons and resonances 



Hadron resonance gas versus lattice QCD calculations  

we take these e↵ects into account (which corresponds to a distorted spectrum), the HRG

curves on both figures are sensibly di↵erent from the physical ones and agree with the

corresponding lattice data of hotQCD. Our continuum results on the strange susceptibility

are compared to the other results, too. We observe a good agreement between our results

and the “physical” HRG ones4. Notice that the agreement between lattice and HRG model

results is good below the transition temperature, while for larger temperatures a deviation

is obviously expected. This is observed both in our results and the hotQCD ones, but the

temperatures at which deviations occur are obviously di↵erent.
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Figure 7: Left: (✏ � 3p)/T 4 as a function of the temperature. Open symbols are our results.
Full symbols are the results for the asqtad and p4 actions at Nt = 8 [5]. Solid line: HRG model
with physical masses. Dashed lines: HRG model with distorted spectrums. As it can be seen,
the prediction of the HRG model with a spectrum distortion corresponding to the stout action at
Nt = 8 is already quite close to the physical one. The error on the recent preliminary HISQ result
[11] is larger than the di↵erence between the stout and asqtad data, that is why we do not show
them here. Right: renormalized Polyakov loop. We compare our results with those of the hotQCD
Collaboration (asqtad and p4 data for Nt = 8 [5]).

In the left panel of Fig. 7 we show the trace anomaly divided by T 4 as a function

of the temperature. Our Nt = 8 results are taken from Ref. [15]. Notice that, for this

observable, we have a check-point at Nt = 10 too: the results are on top of each other.

Also shown are the results of the hotQCD collaboration at Nt = 8 [5] and the HRG model

predictions for physical and distorted resonance spectrums. On the one hand, our results

are in good agreement with the “physical” HRG model ones. It is important to note,

that using our mass splittings and inserting this distorted spectrum into the HRG model

gives a temperature dependence which lies essentially on the physical HRG curve (at least

within our accuracy). On the other hand, a distorted spectrum based on the asqtad and

p4 frameworks results in a shift of about 20 MeV to the right. The asqtad and p4 lattice

results can be successfully described by this distorted HRG prediction, too.

In the right panel of Fig. 7 we show the renormalized Polyakov loop (the renormaliza-

tion procedure was discussed in the previous Section). The comparison with the data of

4For completeness we included in our comparisons preliminary [11] results of the hotQCD collaboration

obtained by the HISQ and asqtad actions on Nt=8 and 12, respectively. We will discuss their impact later.
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Figure 8: Left: Renormalized chiral condensate as defined in Eq. (4.3). Right: Subtracted chiral
condensate �l,s as defined in eq. (4.4), as a function of the temperature. Gray bands are the
continuum results of our collaboration, obtained with the stout action. Full symbols are obtained
with the asqtad and p4 actions [5, 11]. In both panels, the solid line is the HRG model result with
physical masses. The error band corresponds to the uncertainty in the quark mass-dependence of
hadron masses. The dashed lines are the HRG+�PT model result with distorted masses, which
take into account the discretization e↵ects and heavier quark masses used in [5, 11] for Nt = 8 and
Nt = 12.
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Figure 9: Subtracted chiral condensate �l,s as a function of the temperature. The empty triangles
are our results with physical quark masses as shown in Fig. 4. The empty rectangles are our results
with an average pion mass of 587 MeV at T ' 135 MeV. The red curve is the result of the hotQCD
collaboration [5]: these results are the same shown in Fig. 8: a line connects the data to lead the
eye. For all sets of data we have Nt = 8. As it can be seen, the asqtad data can be mimicked in
the stout framework by using a larger quark mass.

limit within the HISQ framework is still missing. This last important step (which needs

quite some computational resources and also care) will hopefully eliminate the remaining

minor discrepancy, too. The same two members of the hotQCD Collaboration presented
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QCD thermodynamics at non-zero chemical potential  

Taylor expansion :  

hadronic 

quark 

Taylor expansion coefficients give the fluctuations and correlations of conserved 
charges, e.g.   

Computation of Taylor expansion coefficients reduces to calculating the product of 
inverse fermion matrix with different source vectors => can be done effectively on 
GPUs   
                             

µS

T



Deconfinement : fluctuations of conserved charges   

baryon number 

electric charge 

strangeness 

Ideal gas of massless quarks : 

conserved charges are carried by massive hadrons 

conserved charges carried 
by light quarks 

HotQCD: PRD86 (2012) 034509  
 
BW: JHEP 1201 (2012) 138, 
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Deconfinement : fluctuations of conserved charges   

baryon number 

electric charge 

strangeness 

Ideal gas of massless quarks : 

conserved charges are carried by massive hadrons 

conserved charges carried 
by light quarks 

BNL-Bielefeld : talk by C. Schmidt 
BW: talk by Borsanyi  
@ Confinement X conference 
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Correlations of conserved charges   

•   Correlations between strange and light quarks at low T are due to the fact that strange  
hadrons contain both strange and light quarks but very small  at high T (>250 MeV) 
=> weakly interacting quark gas  
 
•  For baryon-strangeness correlations HISQ results are close to the physical HRG result, 
at T>250 MeV these correlations are very close to the ideal gas value  
 
•  The transition region where degrees of freedom change from hadronic to quark-like is 
broad ~ (100-150) MeV 

P.P. J.Phys. G39 (2012) 093002  



Deconfinement of strangeness   
Partial pressure of strange hadrons in uncorrelated hadron gas:  

χ2
B-χ4

B

v1

v2
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non-int. quarks

uncorr.
 hadrons

should vanish ! 

•  v1 and v2 do vanish within errors  
at low T 
 
•  v1 and v2 rapidly increase above 
the transition region, eventually 
reaching non-interacting quark 
gas values  
 

BNL-Bielefeld, arXiv:1304.7220 



Deconfinement of strangeness  (cont’d)   
Using the six Taylor expansion coefficients related to strangeness 
 
 
 it is  possible to construct combinations that give  
 
 
up to terms  

BNL-Bielefeld, arXiv:1304.7220 
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Quark number fluctuations at high T  
At high temperatures quark number fluctuations can be described by weak  
coupling approach due to asymptotic freedom of QCD 

•  Lattice results converge as the continuum limit is approached 
•  Good agreement between lattice and the weak coupling approach for 2nd order  
     quark number fluctuations 
•  For 4th order the weak coupling results are in reasonable agreement with  lattice 

2nd order quark number fluctuations    4th order quark number fluctuations 

Andersen, Mogliacci, Su, Vuorinen, PRD87 (2013) 074003 
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Staggered versus Wilson and Overlap Fermioms   
Comparison with Wilson Fermion calculations, mπ ≈ 500 MeV,  
Borsányi et al, arXiv:1205.0440 
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Comparison with overlap Fermion calculations, mπ ≈ 350 MeV 
Borsányi et al, PLB713 (12) 342 
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