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What evidence exists concerning QR dynamics?

1980s: After perturbative calculations of QCD at high temperatures
sparked interest in quark-gluon plasma, lattice QCD was studied at finite

temperature.
Kanaya and Satz: The Polyakov loop correlation function

[(r,T) = (LO)L(r)) — (L(r))?
~ exp(—r/&(T)) at high T and large r.

Usual physical interpretation: what is the free energy of two infinitely
heavy quarks in pure gauge theory?
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Lattice gauge theory at high temperatures

& at high temperatures:
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Matsui and Satz, 1986

The J/1) particle is quarkonium: a c¢T bound state described
phenomenologically with the Cornell potential:

Ve(r) = —a/r+or.

[(r) at zero T behaves roughly like exp(—Vc(r)/T).
&(T) — 0: cC bound states change with T and above some T, no longer
exist.

Pure gauge theory suggests no J/1) states can exist above 1.2T; theories
with dynamical quarks should not allow quarkonia even at lower
temperatures.



The experimental status of J/v in HICs
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A single heavy quark above deconfinement

When M > T, p, the dynamics described by 3x = fd3q|q|25—c;_3.

How to determine?
»HTL effective theory (poor convergence from LO to NLO for realistic as)

(l\/loore and Teaney, Caron-Huot and l\/loore).
»Lattice QCD (analytic continuation of Euclidean correlators difficult).
»AdS/CFT for strongly-coupled gauge theories (not QCD) (Gubser,

Casalderrey-Solana and Tea ney) .

Current phenomenology of heavy quark elliptic flow gives 3x ~ 4T3, larger
than LO HTL estimates but smaller than in strongly-coupled ' = 4 SYM
theory.
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A single heavy quark above deconfinement

When M > T and yv < 1, dynamics described by the relativistic
Langevin equation:

Ci./_l;i = —p' +E(t), (E(DF(H)) = ns?6(t — t).

Requiring (p?(t)) to approach the thermal value gives the Einstein
relation:

n=~k/2MT



Modelling quarkonium with Langevin dynamics

Loosely bound quarkonium can also be described with a relativistic
Langevin equation. For each quark J in a pair forming quarkonium,

dpj i i OV (xk)
™ np; + &5(t) o

(&(0)6k(t)) = roT6™ (e — ).

Disassociation of J/1) now dynamical, includes the physics of
potentials with both real and imaginary parts. A satisfactory
description at strong coupling.
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Heavy quark hadronization at freeze-out

In elementary collisions, color evaporation model: if M < 2Mp, where

M = \/(p1 + p2)?, the heavy quarks form a quarkonium state. Simple,
successful across experiments (color singlet model underpredicts, color
octet (NRQCD) model has many parameters).

However, in AA collisions, how to take into account non-trivial evolution in
momentum and position?
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Heavy quark hadronization at freeze-out

In elementary collisions, color evaporation model: if M < 2Mp, where

M = \/(p1 + p2)?, the heavy quarks form a quarkonium state. Simple,
successful across experiments (color singlet model underpredicts, color
octet (NRQCD) model has many parameters).

However, in AA collisions, how to take into account non-trivial evolution in
momentum and position?

Modified color evaporation model: M = \/(p1 + p2)? + Voormen(ronm)-

Useful for calculating recombinant production (Q and Q from separate
perturbative processes) and B yields.
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Raa for J/1 and MARTINI

Anomalous Rpp

The surviving component of the J/v yield not enough to
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D and J/¢ vao(pr) with MARTINI
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Flow of J/1) and D mesons explained with different kinetic freeze-out
temperatures for the different mesons (sequential freeze-out).

Tiin = 190 MeV consistent with Euclidean quarkonium correlators.
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B. meson production

B. mesons are predicted for heavy ion collisions (Schroedter et al. 2000); the

yields for these states in elementary collisions are small.

Mostly produced
recombinantly, testing
models for in-medium
hadronization.

Sensitive to heavy quark
densities at hadronization;
an indirect probe of T, for
quarkonia.

Measurements at RHIC and
the LHC complementary.

B, meson yields
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J /1) properties from quarkonium spectral functions

It is possible to use lattice QCD to probe quarkonium melting more directly

that with T'(r, T), by examining correlation functions of J* = t(x)y"1)(x).
Mocsy and Petreczky: This current’s autocorrelation function at finite
temperature is related to the spectral function for quarkonium in the
vector channel:

cos(w(r — 5/2))
sin(wf/2)
and through this, to the existence of bound states and resonances. Are

changes in G(7) with decreasing /3 caused by changes in the spectral
function? If yes, how?

G(r) = /dsx (JH(x,7)4.(0,0)) = /dw o(w);
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J /1) properties from quarkonium spectral functions
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Quarkonium as an open quantum system

What dynamics can explain these changes in the quarkonium spectral
functions, specifically, resonances persisting with a decreased lifetime
above T.7

Brownian motion for single heavy quarks successful for describing flow of
D mesons: the relativistic Langevin equation

dp’ P el i\ () — s /

B — —ip + € () = nbT3(e — )
describes heavy quarks at high temperature as a stochastic process.

The spatial diffusion 27 TD ~ 3 in order to explain the significant flow of
charm at the RHIC: much smaller than perturbative estimates.

A unified phenomenological description of heavy quark flow, J/v
suppression, and quarkonium spectral functions is better than a
phenomenological description of only one of these.
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Quarkonium as an open quantum system

How can Brownian motion be quantized? Feynman's reduced density
matrix: suppose a heavy particle interacts with a light degree of freedom
we don't care about:

L = L5+L[;
1
Ls = 5M>'<Z—V(x),
1 1
L, = §m'r2—§mw2r2—er.

Taking the trace over the light degree of freedom gives

x(B)=xf
Pred(Xi,Xfyﬂ)E/dfP(Xiaf?Xfaf?ﬁ)Z/ Dx

(0)=x;

C2
exp(—SE [X]—|—ZW / dr / ds x(7)x(s) cosh [wi (7 — s — B/2)]).
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Quarkonium as an open quantum system

Caldeira and Leggett: A continuous density of states

2mne? ifw<Q
C? =< 7
(@)po(w) {0 ifw>0Q

leads to the Langevin equation with drag coefficient 7 in the classical limit.
CY and Dusling: The reduced imaginary-time Green function

o0

Gred (X, %0, 7, 8) = Y (x¢, [T+ nB[%i, 0),eq
e x(|T+nBl)=x¢ |7+npB| 1
= Z / Dx exp —/ dr’ [MX(T')2+ Vr(x(7"))
e _oo Y X(0)=x; 0 2

!

w o sin(5 2557)
~ o ), ds x(7')x(s) log [wrtrs) '

Sln(j |T+”ﬁ|
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Is Langevin dynamics consistent with changes to the

charmonium spectral functions?
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Back to the main question: what evidence exists
concerning @ dynamics?

It remains unclear:

» Lattice QCD reliable for correlation functions (indirectly interesting
physically), difficult to extract spectral functions

» Experimental results are of fundamental importance but include multiple
effects (modified initial production, early time dynamics,
recombination,...)

» Perturbative QCD (NRQCD) reliable in limits of dubious significance for
HICs

» AdS/CFT of questionable significance in any limit
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Conclusions

» In ~ 10 years, the J/1) went from being an important clue in the
development of the Standard Model to a probe for temperature in
heavy-ion collisions.

» Langevin dynamics makes predictions about quarkonium spectral
functions above deconfinement and will help untangle the roles of
changing potentials and interaction with the medium.
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