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To study the deconfining phase transition at nonzero temperature, I outline the perturbative
construction of an effective theory for straight, thermal Wilson lines. Certain large, time dependent
gauge transformations play a central role. They imply the existence of U(1) interfaces, which can
be used to determine the form of the effective theory as a gauged, nonlinear sigma model of adjoint
matrices. Especially near the transition, the Wilson line may undergo a Higgs effect. As an adjoint
field, this can generate eigenvalue repulsion in the effective theory.

Recent results at the Relativistic Heavy Ion Collider
(RHIC) demonstrate qualitatively new behavior for the
collisions of heavy ions at high energies [1]. RHIC ap-
pears to have entered a region above Tc, the temperature
for deconfinement, reaching up to temperatures a few
times Tc. The experimental results cannot be explained
if the transition is directly from a confined phase to a per-
turbative Quark-Gluon Plasma (QGP). Instead, RHIC
seems to probe a novel region, which has been dubbed
the “sQGP” [2].

In this paper I sketch how to develop an effective theory
for the sQGP. Classically, the model is a familiar spin
system, a gauged principal chiral field [3]; beyond leading
order, it is more general. A mean field approximation
to the effective theory gives a random matrix model [3].
Such models are dominated by eigenvalue repulsion from
the Vandermonde determinant in the measure. For a
SU(∞) gauge theory in a small volume, deconfinement
is driven by exactly such a mechanism [4]. I indicate later
how eigenvalue repulsion might arise in infinite volume,
from the Higgs effect for an adjoint matrix.

By the converse of asymptotic freedom, the running
QCD coupling, αs(T ) = g2(T )/(4π), increases as the
temperature decreases. Thus a natural possibility is that
in the sQGP, αs(T ) becomes very large as the temper-
ature T → T+

c . For the phenomenology of a strongly
coupled, deconfined phase, see [2].

A definitive value for αs(T ) can be obtained by match-
ing correlation functions, for the original theory in four
dimensions, with an effective theory in three dimensions
[5, 6, 7, 8, 9]:
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This is the Lagrangian for a massive, adjoint scalar field,
A0, coupled to static magnetic fields, Ai: A0 and Ai are
the time like and space like components of the vector
potential, Gij is the non-abelian magnetic field strength,
and Di the covariant derivative. Fields and couplings are
normalized as in four dimensions, with the three dimen-
sional action

∫
d3x/T times the Lagrangian. At leading

order, integrating out the four dimensional modes pro-
duces a Debye mass for A0, m2

D/T 2 ∼ αs, and quartic

couplings, κ1 and κ2, ∼ α2
s, with each a power series in

αs.
This effective theory represents an optimal resumma-

tion of perturbation theory. As such, it applies only when
fluctuations in A0 are small. Computing the pressure to
four loop order, ∼ α3

s, the results are complete up to one
undetermined constant [9]. Even with the most favorable
choice for this constant, however, the pressure does not
agree with that from numerical simulations on the lattice
below temperatures of ∼ 3Tc [6, 7].

These computations are done in imaginary time, where
the “energies” are multiples of 2πT . Thus the cou-
pling constant αs(T ) runs with a scale which is of or-
der ∼ 2πT [5]. Computations to two loop order show
that even better, this mass scale is ∼ 9T in QCD [7].
For Tc ∼ 175 MeV, this is ∼ 1.6 GeV; at 3Tc, it is
∼ 4.7 GeV. While these mass scales are not asymptotic,
neither are they obviously in a non-perturbative regime:
e.g., αs(1.6 GeV) ∼ 0.28 [7]. Hence the question be-
comes: why does this effective theory fail between Tc

and ∼ 3Tc, if the coupling is not that large?
To see how this might occur, consider a straight, ther-

mal Wilson line in the fundamental representation:

L(x, τ) = P e
ig

∫ τ

0

A0(x, τ ′) dτ ′

; (2)

P denotes path ordering, x is the spatial position, and τ ,
the imaginary time, runs from 0 to 1/T . A closed loop
is formed by wrapping all of the way around in imagi-
nary time, L(x, 1/T ). As this quantity arises frequently,
I denote it by L(x).

The Wilson line is a matrix in color space, and so is not
directly gauge invariant: under a gauge transformation
U(x, τ), L(x) → U†(x, 1/T )L(x)U(x, 0). The trace of the
Wilson line is gauge invariant, and is the Polyakov loop
in the fundamental representation. Normalizing so that
this loop is one when A0 = 0, then its expectation value
should be near one if gA0/(2πT ) is small. Numerical
simulations of a lattice SU(3) gauge theory show that
while the expectation value of the renormalized triplet
loop is near one at 3Tc, this is not so when T < 3Tc.
Without dynamical quarks, it drops to a value of ≈ 0.45
at Tc [10, 11, 12, 13]; its value with dynamical quarks is
similar [14].
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Since the triplet loop is significantly less than one be-
tween Tc and ∼ 3Tc, in this region it is necessary to
extend the program of [5, 6, 7, 8, 9] to construct an ef-
fective, three dimensional theory for arbitrary values of
gA0/(2πT ). While A0 can be large, as it applies only
for distances � 1/T , we can assume that all spatial mo-
menta are small relative to 2πT [15, 16, 17, 18, 19, 20].
This is like chiral perturbation theory, with temperature
playing the role of the pion decay constant.

Certainly the effective theory must be invariant under
static gauge transformations, U(x, τ) = U(x). In addi-
tion, and somewhat unexpectedly for a theory in three
dimensions, certain time dependent gauge transforma-
tions matter. For a SU(N) gauge group, consider

Uc(τ) = e2πi τT tN , tN =
(

1N−1 0
0 −(N − 1)

)
; (3)

1N−1 is the unit matrix. This is spatially constant and
strictly periodic in τ , Uc(1/T ) = e2πi 1N = Uc(0), and
so appears to be rather trivial. Instead, it turns out to
be essential in constraining the form of the effective La-
grangian at large A0. Since they don’t alter the boundary
conditions in imaginary time, similar gauge transforma-
tions exist for any gauge group, coupled to matter fields
in arbitrary representations.

In four dimensions, the electric field is a sum of two
terms, DiA0 − ∂0Ai. Under (3), diagonal elements of
A0 are shifted by a constant amount, Adiag

0 → Adiag
0 +

2πTtN/g, while off-diagonal elements of A0 and Ai un-
dergo time dependent rotations. Thus the first term,
DiA0 = ∂iA0 − ig[Ai, A0], changes if [Ai, tN ] 6= 0.
This is unavoidable for some off-diagonal components of
Ai. Since the complete electric field transforms homoge-
neously under gauge transformations, the piece∼ [Ai, tN ]
is cancelled by the time dependent rotation of Ai in the
second term, −∂0Ai.

This also shows that it is not apparent how to imple-
ment these gauge transformations in an effective theory.
The simplest thing is just to drop all time derivatives,
taking the effective electric field Ei = DiA0. This is not
invariant, however, under the shift in Adiag

0 ; and with
no time derivatives, there is nothing to cancel the piece
∼ [Ai, tN ]. Since the shift in A0 is ∼ T/g, this can be
ignored at small A0, such as for (2).

The problem cannot be ignored at large A0, and arose
previously [19, 20]. The N th root of Uc is an aperiodic
gauge transformation, = e2πi/N1N at τ = 1/T . If there
are no dynamical quarks present, this is an allowed gauge
transformation, and reflects the Z(N) center symmetry
of a SU(N) gauge group [21]. Ref. [19] computed in
the presence of nonzero, background fields for both A0

and Ai, allowing A0 to be large. They found that if the
effective Lagrangian is formed from terms such as DiA0,
then the Z(N) center symmetry appears to be violated
at one loop order. The argument above, applied to U1/N

c ,
shows that even classically, Ei = DiA0 is not consistent
with the requisite Z(N) symmetry.

The significance of these large gauge transformations
can be understood by looking at the Wilson line. Since
L is a SU(N) matrix, L†(x)L(x) = 1N , it can be diago-
nalized by a unitary transformation [22],

L(x) = Ω(x)† eiλ(x) Ω(x) . (4)

λ(x) is a diagonal matrix, with elements λa, a = 1 . . . N .
As det(L) = 1, trλ(x) = 0, modulo 2π. Under static
gauge transformations, U(x) = U , the adjoint covariant
derivative and the Wilson line transform similarly, Di →
U†Di U and L → U†LU . Hence the λa do not change,
while Ω is gauge dependent, Ω → ΩU [23].

The λa can change under time dependent gauge trans-
formations: under (3), λ → λ+2πtN , so each λa shifts by
an integral multiple of 2π. Hence gauge transformations
such as (3) ensure that the λa’s are periodic variables. Of
course this is obvious from the definition of the Wilson
line, since its eigenvalues are just eiλa .

This periodicity is present for an abelian gauge group,
where the Wilson line is merely a phase, L = eiλ. Shift-
ing λ → λ + 2π is an Aharonov-Bohm effect, where the
Wilson line, in imaginary time, wraps around a patch of
magnetic flux in a fictitious fifth dimension. This illus-
trates elementary topology [24]. At nonzero temperature,
imaginary time is isomorphic to a sphere in one dimen-
sion, S1. Topologically nontrivial windings are given by
mappings from S1 into U(1), and are classified by the
first homotopy group, π1(U(1)) = Z, where Z is the
group of the integers.

The result for a nonabelian group is an exercise in
abelian projection [22]. The r diagonal generators in the
Cartan subalgebra define the maximal torus, which is an
abelian subgroup of U(1)r, the direct product of r U(1)’s.
Nontrivial windings are then given by π1(U(1)r) = Zr.
In SU(N), r = N − 1, and tN is one of these diagonal
generators.

The effective Lagrangian must respect the periodicity
of the λa’s. This is automatic if it is constructed from
the Wilson line. What is then obscure is the form of the
effective electric field, Ei. Consider

Ei(x) =
T

ig
L†(x)DiL(x) . (5)

Like the original electric field, this is gauge covariant,
Ei → U†EiU . It is also hermitean, and so is not ∼ DiL.
If the gauge group has a center symmetry, then Ei is triv-
ially center symmetric. In accord with the conclusions of
[21], though, the presence of a center symmetry is really
secondary for what follows.

For small A0, and static Ai 6= 0, this reduces to the
expected form, Ei = DiA0, as in (2). This rules out
using an Ei constructed entirely from the eigenvalues of
L. The simplest example is Ei ∼ ∂iλ, with an infinity of
other terms, such as |trL|2 times this, etc.

There is one last limit which is essential in establishing
(5), although its origin will only be clear after the dis-
cussion of interfaces below. I require that when Ai = 0,
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and A0 is static and diagonal — but of arbitrary magni-
tude — that it reduces to the abelian form, Ei = ∂iA0.
This forbids an infinity of terms, formed by taking vari-
ous combinations of traces of L times (5), such as |trL|2,
etc. (Equivalently, one can write these terms times (8),
as in (9)-(13) of [25].) To leading order, these conditions
uniquely determine Ei. In mathematics, (5) is known as
the left invariant one form of L [26].

Using the properties of path ordering, the effective
electric field can be written as

Ei(x)/T =
∫ 1/T

0

dτ L(x, τ)† ∂iA0(x, τ) L(x, τ)

− L(x, 1/T )† [Ai(x),L(x, 1/T )] . (6)

Up to the various Wilson lines — which are, after all,
phase factors in the gauge group — this is a plausible
form for a gauge covariant electric field formed by aver-
aging over τ .

With this Ei, the effective Lagrangian is that of a
gauged, nonlinear sigma model [3, 27]:

Leff
classical(Ai,L) =

1
2

trG2
ij +

T 2

g2
tr

∣∣L†DiL
∣∣2 . (7)

Using the decomposition of the Wilson line in (4), the
electric field term is proportional to

tr |DiL|2 = tr (∂iλ)2 + tr
∣∣[Ω Di Ω†, eiλ

]∣∣2 . (8)

The first term is that of an abelian theory, while the sec-
ond couples the nonabelian electric and magnetic sectors
together. Since eiλ is invariant under static gauge trans-
formations, so is the combination Ω Di Ω† [23].

On the lattice, the analogy of (8) is well known from
Banks and Ukawa [28]. I suggested (8) previously [18],
but only by expanding in small A0. This does not suffice
to fix its form at large A0. For a related linear model,
see [29].

The effective Lagrangian of (7) is not renormalizable in
three dimensions (it is in two [25]), but this is a standard
feature of effective theories [5]. It is also common that
the effective fields are only indirectly related to those in
the original theory, although it is especially striking here.

As an aside, I remark that the instanton number in
four dimensions carries over directly to the effective the-
ory. Start with a smooth, strictly periodic classical field,
Aµ(x, τ), and then transform to A0 = 0 gauge. The
gauge transformation which does this is just L(x, τ), (2).
The instanton number is then a difference of Chern-
Simons terms between τ = 1/T and 0 [15]. One can show
that the instanton number equals the winding number of
the Wilson line:

1
24π2

∫
d3x εijk tr (CiCjCk) ; Ci = L†∂iL , (9)

which is an integer. This suggests an analogy to the color
Skyrmions of [26]: these have nonzero winding number,
but are not instantons.

To establish (7), it is necessary to show that it gives
the same physics as the original theory, especially at large
A0. One possibility is to use the interfaces which exist
because the λa’s are periodic.

This is most familiar for the Z(N) interface of a SU(N)
gauge theory without quarks [17, 29]. This is given by
taking a box, long in one spatial direction, with L = 1N

at one end of the box, and L = e2πi/N1N at the other.
A Z(N) interface is related to the disorder parameter of
’t Hooft [30, 31].

The interface which corresponds to Uc, (3), is given by
taking A0 = 0 at one end of the box, and A0 = 2πTtN/g
at the other [32]. This is a U(1) interface: while L = 1N

at both ends of the box, the change in A0 is nontrivial,
and cannot be undone [24]. It is not related to a disorder
parameter. Without quarks, there is a row of N , distinct
Z(N) interfaces. With quarks, these coalesce into one
U(1) interface; like the expectation value of L, it exists
in both phases. In the early universe, U(1) interfaces
can produce (radial) domain walls. Because they persist
at low temperature, they might be significant cosmolog-
ically, especially in QED.

To leading order in g2, it is easy to use interfaces to
match the effective theory to the original. In the original
theory, compute for constant L to one loop order. For a
SU(N) gauge theory without quarks, this gives [15]

Leff
1 loop(L) = − 2 T 4

π2

∞∑
m=1

1
m4

|trLm|2 +
π2T 4

45
. (10)

To leading order, the effective Lagrangian is the sum of
(7) and (10) [17]. Because Ei = ∂iA0 when Ai = 0,
and A0 is static, diagonal, and of arbitrary magnitude,
trivially a Z(N) interface is the same in both theories.
Dynamical quarks add new terms to the potential, which
lift the Z(N) symmetry, and so remove Z(N) interfaces.
U(1) interfaces remain, and are analyzed similarly, with
the same result for Ei.

At higher order, matching between the original and
effective theories is much more involved. The effective
Lagrangian is constructed from L and Gij in a derivative
expansion, with terms for constant L [4, 11, 12], two
derivatives [11, 17, 18, 19, 20, 25], four [19], and so on. At
higher order, matching will involve computing both the
interface tension, ∼ T 2/

√
αs, and expectation values of

gauge invariant operators in the presence of an interface.
Further, my discussion of (2) was incomplete: it is

merely the first step of three, with the others integrating
out the electric and magnetic sectors [5, 6, 7, 8, 9]. While
A0 is large at the center of an interface, it is small at the
ends, and so there the electric sector must be treated
more carefully. For the pressure, it should be possible to
isolate that piece which is L dependent, after subtract-
ing the vacuum energy of the static magnetic sector for
L = 0 [9].

While meaningful statements can only be made after
computation at next to leading order, when the scale of
αs is set, qualitatively much of the physics can be under-
stood from (10). The perturbative vacuum, 〈L〉 = 1N ,
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gives minus the pressure of an ideal SU(N) gas, pideal =
−Leff

1 loop(1N ) = +(N2 − 1)π2T 4/45. This is the absolute
minimum at leading order, and it is at least metastable,
order by order in αs.

In a SU(N) gauge theory without quarks, deconfine-
ment is related to the breaking of a global Z(N) sym-
metry: under a Z(N) transformation, L → zL, where
z = e2πi/N . Consider the diagonal SU(N) matrix

Lc = diag
(
1, z, z2 . . . zN−1

)
(11)

Of the loops constructed from Lc, only those which are
Z(N) neutral are nonzero: if m is an integer, tr (Lc)m = 0
when m is not a multiple of N , and = N when it is.
Hence Lc might represent the Z(N) symmetric, confined
vacuum [16, 33, 34]. However, at leading order, (10),
p(Lc) = −Leff

1 loop(Lc) = −(1 − 1/N2)π2T 4/45. Thus for
any finite N , Lc has negative pressure, and is not a phys-
ical state.

At infinite N , however, Lc does represent the confined
vacuum. While its pressure is negative, this is ∼ 1, and is
negligible relative to that ∼ N2 in the deconfined phase
[4, 33, 34]. While (10) is only valid at leading order, since
any trace of Lc vanishes at N = ∞, the pressure for Lc

remains ∼ 1 to all orders in αsN [34].
At infinite N , Lc is familiar from random matrix mod-

els: there is complete eigenvalue repulsion, and a flat
eigenvalue density [3, 4, 33]. Numerical simulations sug-
gest that in the confined phase, the eigenvalue density for
small N is like that of N = ∞. By factorization, in the
confined phase the expectation value of the renormalized
adjoint loop is ∼ 1/N2 [11]. For N = 3, though, nu-
merically this is found to be not ∼ 10%, but only ∼ 1%
[11, 13]. That the expectation value of a Z(N) neutral
loop is so small indicates that the functional integral is
close to an integral over the group measure; i.e., that the
eigenvalue density is nearly flat.

In perturbation theory, though, there is no sign of any
eigenvalue repulsion which might produce a flat distri-
bution. As in (10), and seen to three loop order in [4],
the perturbative potential for constant L only involves
sums of eigenvalues, and not differences. Thus eigen-
value repulsion, and so confinement, must be generated
by fluctuations in the effective theory.

It is known how this happens for SU(∞) on a very
small sphere [4]. The effective Lagrangian is a single
integral for the constant mode of L: as a random ma-
trix model, the Vandermonde determinant in the measure
generates eigenvalue repulsion and drives the transition
[3, 4, 12]. In infinite volume, though, terms in the mea-
sure depend upon the regularization; e.g., they vanish
with dimensional regularization.

To represent the non-perturbative effects which might
drive the transition in infinite volume, consider adding
to the effective Lagrangian

Leff
non−pert. ∼ +Bf T 2 |trL|2 . (12)

While motivated by precise results from numerical sim-
ulations [35, 36], this term is only meant to illustrate

what is possible near Tc [37]. It shifts the minimum in
the loop potential from the perturbative value, 〈L〉 = 1N ,
to some 〈L〉 6= 1N . This is interesting because it produces
a Higgs effect for Ai. As an adjoint field, in perturbation
theory the mass magnetic gluons acquire from 〈L〉 6= 1N

involves differences of eigenvalues, as diagonal gluons re-
main massless, and off diagonal gluons develop a mass
[22]. Integrating out fluctuations in Ai and L to one loop
order (which is easiest in unitary gauge), there is a qual-
itatively new term in the effective Lagrangian,

∆Leff ∼ −
N∑

a,b=1

(
g2|eiλa − eiλb |2

)3/2
. (13)

The sign is physical, and corresponds to eigenvalue repul-
sion. Once (13) is included, 〈L〉 is given by a distribution
of eigenvalues.

These calculations are only suggestive. It is not obvi-
ous how to characterize, gauge invariantly, such an ad-
joint Higgs phase for strongly coupled gluons in three
dimensions. Qualitatively, a Higgs phase should increase
the mixing between the Wilson line and magnetic glue-
balls [29, 38], which is usually very small.

The effective theory, as determined perturbatively, can
be studied in various ways. Since the ultraviolet cutoff is
physical, it is reasonable to start with mean field theory
[11, 12]. To do better, the theory could be simulated
numerically on a lattice, to directly measure quantities
such as the eigenvalue distribution, glueball masses, etc.
At large N [36], analytic approximations may help [39].

The usual justification for an effective Lagrangian is
the presence of a small mass scale, but generically, there
is none here. If the effective coupling is small at Tc [7],
though, then with care nothing is lost by going to an ef-
fective Lagrangian. Presumably, this is worthwhile when
(2) fails: from ∼ 3Tc, down to some point below Tc [40].
For constant L, the effective potential shows no signs
of a transition to a confining phase: at N = ∞, and
perhaps even for small N , this must involve eigenvalue
repulsion. In infinite volume, this arises dynamically, es-
pecially from fluctuations in the angular variables, Ω, and
the gauge fields, Ai. This, then, is why the effective the-
ory is of interest: we can use it to uniquely isolate the
dynamic origin of the transition, as eigenvalue repulsion.
It thus provides a notable example of a field theory of
(not so) random matrices [3].
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