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There are many 
things we don’t see
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The Population
• Most ubiquitous particle 

is light (photons)

• Most ubiquitous matter 
particle is neutrinos

• Clearly we need to 
understand and use 
them to study the 
universe

• But neutrinos, dark 
matter all invisible!
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Don’t be afraid of 
invisibles

Trillions of neutrinos go through our body every 
second coming from the Sun
but no longer invisible with HUGE devices

taken 3000ft underground

SuperK

~100ft tall
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Expansion of Space
• The spacetime itself is 

stretching, galaxies 
dragged away

• Universe getting colder 
as it expands

• It was much hotter 
earlier: Big Bang



16

Afterglow of Big Bang

Nobel Prize in 
Physics 2006

COBE
satellite
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Cosmic Questions
for DUSEL

• What is the Universe made of?

• What is Dark Matter?

• Did neutrinos form galaxies?

• Where did the Anti-Matter go?

• Where did we come from?



Dark Matter
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Something else we can’t see is keeping 
us inside the galaxy

There are not enough stars to
hold us inside the galaxy!

Solar system moves
at 130 miles/sec
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Whole Universe

• matter=all atomsx6
• invisible & unknown matter 

dominates the universe!



We don’t exist
without dark matter

Without Dark Matter With Dark Matter
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Search for MACHOs
(Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Dim Stars?

MACHO

95% cl

0.2

!6 !2!8 !4 0 20.0

0.4

0.6

f 
=

!
7

EROS!2 + EROS!1
upper limit (95% cl)

logM= 2log( /70d)tE

EROS collaboration
astro-ph/0607207
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• It must be WIMP (Weakly 
Interacting Massive 
Particle)

• Stable heavy particle 
produced in early 
Universe, left-over from 
near-complete annihilation

MACHO ⇒ WIMP



G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 

find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 

The current entropy density is so N 4000 cmm3, and the critical density today is 

pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 

present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 

inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 

actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 

the solid curve is the equilibrium abundance. From [31]. 
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• thermal equilibrium when 
T>mχ

• Once T<mχ, no more χ 
created

• if stable, only way to lose 
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• thermal equilibrium when 
T>mχ

• Once T<mχ, no more χ 
created

• if stable, only way to lose 
them is annihilation

• but universe expands and 
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• thermal equilibrium when 
T>mχ

• Once T<mχ, no more χ 
created

• if stable, only way to lose 
them is annihilation

• but universe expands and 
χ becomes dilute

• at some point they can’t 
find each other

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 
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Quantum Dimension
• The best candidate 

suggested by string 
theory: supersymmetry

• every particle has anti-
matter counterpart: 
doubled the number

• Nature may do it again
• The lightest 

superparticle is stable, 
neutral, weakly 
interacting

⇒ Dark Matter candidate
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To listen to the faint sound of dark matter,
go where it’s quiet

Can’t hear subtle 
intonation

Need to be shielded
from noise!
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Finding Dark Matter
Go underground! Soudan, MN: too shallow

detector

dark matter

phonon or photon

nucleus

DUSEL

ground

cosmic rays



Getting There
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Matter and Anti-Matter
Early Universe

1,000,000,001 1,000,000,000

matter anti-matter
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Matter and Anti-Matter
Current Universe

1

The Great Annihilation

us
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matter anti-matter
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Baryo-Genesis

• How did we survive the Great Annihilation?

• Anti-matter looks like an exact mirror of matter

• Why then was matter chosen over anti-matter?

• Somehow, a billionth of anti-matter was 
transformed to matter to create the imbalance

• But nobody has seen matter and anti-matter 
transforming to each other...

⇒ the search is on!
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Proton Decay
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maybe p→e++light

p: hydrogen (matter)
e+: positron (anti-matter)
• Happens less than once 

every 1033 years
• May happen more than 

once a year if you have 1036 
hydrogen atoms            
≈a million ton of water

• Huge underground expt!
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Neutrinoless 
Double-beta Decay

• Can anti-matter turn into 
matter?

• Maybe anti-neutrino can 
turn into neutrino 
because they don’t carry 
electricity!

• 0νββ: nn→ppe–e– with 
no neutrinos

• So rare, can be detected 
only in quiet underground 
environment

Also n-n oscillation
_



CP Violation

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar



CP Violation

• Is anti-matter the exact mirror 
of matter?

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar



CP Violation

• Is anti-matter the exact mirror 
of matter?

• If yes, no hope of our 
survival

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar



CP Violation

• Is anti-matter the exact mirror 
of matter?

• If yes, no hope of our 
survival

1964 discovery of CP violation

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar



CP Violation

• Is anti-matter the exact mirror 
of matter?

• If yes, no hope of our 
survival

1964 discovery of CP violation

• But only one system, hard to 
tell what is going on.

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar



CP Violation

• Is anti-matter the exact mirror 
of matter?

• If yes, no hope of our 
survival

1964 discovery of CP violation

• But only one system, hard to 
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of matter?
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1964 discovery of CP violation

• But only one system, hard to 
tell what is going on.
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phenomena ⇒ theory identified

E
n
tr

ie
s 

/ 
0
.6

 p
s

B
0
 tags

B
! 0

 tags

Background

"t (ps)

R
aw

 A
sy

m
m

et
ry

0

50

100

150

-0.5

0

0.5

-5 0 5

BaBar

Nobel Prize in 
Physics 2008

But observed CP violation is not 
large enough to explain the excess 
of matter by ≈10-10
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Subtle Difference
Is anti-matter the exact 
mirror of matter?

• If yes, no hope of our 
survival

• Neutrinos were 
discovered to morph 
from one type to 
another

• Do anti-neutrinos 
morph the same way?

Shoot the neutrino beams over 
thousands of kilometers to see

this subtle difference

Fermilab

Homestake
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Growing Community

• number of scientists involved in direct 
search for dark matter
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National Science Foundation

48

• Where should this exciting 
science to study the 
universe underground 
done?

• Initially many possible 
sites

• South Dakota state 
legislature committed 
$36 million

• down to one in 2007: 
Homestake
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NSF Web Site

 
Press Release 07-075 

Team Selected for the Proposed Design of the Deep Underground

Science and Engineering Laboratory

 

An artist's rendition of the proposed Deep Underground Science and Engineering
Laboratory design. 
Credit and Larger Version

July 10, 2007

The National Science Foundation (NSF) today announced selection of a University of California-Berkeley proposal to produce
a technical design for a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake gold mine
near Lead, S.D. The Homestake team, headed by Kevin Lesko, could receive up to $5 million per year for up to three years.

A 22-member panel of external experts, all screened for conflicts of interest, exhaustively merit-reviewed proposals from
four teams and unanimously determined that the Homestake proposal offered the greatest potential for developing a DUSEL,
and NSF concurred with the panel's recommendation. The agency's selection of the Homestake proposal provides funding
only for design work. Any decision to construct and operate a DUSEL would entail a sequence of approvals by NSF and the
National Science Board; funding would then have to be requested by the Administration and approved by Congress.

"We are excited about the opportunities in underground research and education that a DUSEL would provide and look
forward to working with all of the research communities to develop a well-conceived plan for this unique, world-leading
facility at the Homestake Mine," said Tony Chan, assistant director for the NSF Directorate of Mathematical and Physical
Sciences. "In tandem with the design of the facility infrastructure, NSF also will begin working with researchers to identify
the initial suite of experiments that might be deployed in DUSEL."

Over the past decade, a dozen "blue-ribbon" independent reports from the National Academies and multiagency government
committees have emphasized the need for a DUSEL, and various candidate sites have been discussed. In September 2006,
NSF solicited proposals to produce technical designs for a DUSEL at one specific site. By the January 2007 deadline, four
teams, each focusing on a different location, had submitted proposals.

The review panel included outside experts from relevant science and engineering communities and from supporting fields
such as human and environmental safety, underground construction and operations, large project management, and
education and outreach. Scientists from Japan, Italy, the United Kingdom and Canada also served on the panel. The review
process included site visits by panelists to all four locations, and two meetings to review the information, debate and vote
on which--if any--of the proposals would be recommended for funding.

The concept of DUSEL grew out of the need for an interdisciplinary "deep science" laboratory that would allow researchers to
probe some of the most compelling questions in modern science. Among them: What are the invisible dark matter and dark
energy that comprise more than 95 percent of everything visible in the universe? What is the nature of ghostly particles
called neutrinos that pervade the cosmos, but almost never interact with matter, and what can certain kinds of extremely
rare radioactivity and particle decay reveal about the fundamental behavior of atoms? Will this site help reliably predict and
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What is the Universe made of?

What is Dark Matter?

Did neutrinos form galaxies?

Where did the Anti-Matter go?

Where did we come from?

We need to go underground to 
answer the cosmic questions!

Captivate the young minds,    
nurture the next generation

Cosmic Questions
for DUSEL
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Go deep!


