
Exotic Neutrinos at Brookhaven, 1Apr08 Tom Weiler,  Vanderbilt University

More Neutrinos 
 + More Space Dimensions

  = More2 New Physics

 

Tom Weiler
Vanderbilt University

µ



Exotic Neutrinos at Brookhaven, 1Apr08 Tom Weiler,  Vanderbilt University

Outline

 *   Neutrinos, what we know (a lot)

 *  LSND/MiniBooNE and the LSND-ino/miniBooNE-ino 
 *  Other uses of sterile neutrinos (parameters)

 *  Before MiniBooNE, there was the
   PPW (Pas, Pakvasa, Weiler) prediction

 *  Now comes,   BHLMPPW   
              (Barger, Huber, Learned, Marfatia, PPW) 

                 In with a flurry, out like a flake? 
 * Closed Timelike Curves and “Time Travel”     
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What we know:

from Strumia and Vissani
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We know (continued)
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   Learned Plot
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TriMinimal Parametrization of Neutrino Mixing 

Pakvasa, Rodejohann, 
TJW        PRL (2008)
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Long-Distance QM evolves to Classical Probabilities
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No-ν Double Beta-decay, Dirac versus Majorana-

If  ν is Dirac, then there exist at least 2 (or 3)
light sterile (gauge singlet) states!  

LSND/MiniBooNE may have glimpsed the 4th.

Majorana-ness can be validated:
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Matter Effects and Resonance

beating against Mass-dependent Kinetic Energies

Flavor-dependent Potential Energies
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Matter-Resonances
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FIG. 24: The Lν/Eν distribution for events with Rγ > 10 and 20 < Ee < 60 MeV, where Lν is

the distance travelled by the neutrino in meters and Eν is the neutrino energy in MeV. The data

agree well with the expectation from neutrino background and neutrino oscillations at low ∆m2.
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LSND Anomaly
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A Palatable Fourth Neutrino?

LSNDino Requires Way Beyond Standard Model Models:

1. νs and CPTV
2. N = Two or more 
3. Exotic pion or mu decay, e.g. 

4. Xdim/Lorentz Violation/Phi-ether
(latter breaks CP, => nu-nubar different)

“It’s parameter-counting, stupid!”
- James Carville
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Some Virtues of Sterile Neutrinos
1. With ~ 1014 GeV mass and Yukawa’s ~1, 
    see-saw mechanism for light nu mass generation
2. With ~ GeV mass and tiny Yukawa’s, see-saw too (Shapashnikov’s   νMSM)
3. Supernovas and r-process nucleosynthesis (Fuller)
4. Pulsar kicks, stellar formation via H+, warm dark matter (Kusenko and collabs.)

Can be sought by Accelerators, but especially, if Dark Matter, 
via GLAST (5/16/08 launch):
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PPW (arXiv: hep-ph/0504096 and PRD 2005)
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In QG/String Theory, brane is dynamical, fluctuating,

due to 
    Quantum Mechanics
    Thermal Mechanics
    In-Brane stresses 
 (e.g. EM vs. gravity)
    Out of Brane experiences 
 (e.g. trans-brane gravity,

or recoil against particle exodus)

Your D-brane looks like this:
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Brane-Bulk resonance in two-state approximation

Define the νa-ν4 projection |νa>U = |ν4> - < νs | ν4 > | νs >, and 
work with single active plus single sterile two-state system:

ε= δ t/t  = δ x/x = δ v/v

Energy and nu/nubar
   independent
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epsilon
We have traded eps for ER,
but,
eps = (kA/2)2 is itself very interesting.
[A is fluctuation amplitude, k is fluc’n wavenumber]

In the brane-fluctuation interpretation,
eps describes the  geometry of the fluctuation.

One interpretation is 
kA = momentum recoil/brane tension,
implies tension to be of order 
i.e.  ~ 100 PeV 
(safely above TeV EW scale)
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“Typical” Oscillation with Resonance

CDHS

Oscillations are vacuum below the resonance, and 
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Examples: few 100 MeV resonance

And significant νµ disappearance for stopped-pion source (SNS)

Text
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 LSND and MiniBooNE data
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FIG. 24: The Lν/Eν distribution for events with Rγ > 10 and 20 < Ee < 60 MeV, where Lν is

the distance travelled by the neutrino in meters and Eν is the neutrino energy in MeV. The data

agree well with the expectation from neutrino background and neutrino oscillations at low ∆m2.
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predicted spectrum when the best-fit two-neutrino oscil-
lation signal is added to the predicted background. The
bottom panel of the figure shows background-subtracted
data with the best-fit two-neutrino oscillation and two
oscillation points from the favored LSND region. The
oscillation fit in the 475 < EQE

ν < 3000 MeV energy
range yields a χ2 probability of 93% for the null hypoth-
esis, and a probability of 99% for the (sin2 2θ = 10−3,
∆m2 = 4 eV2) best-fit point.

e
v
e
n

ts
 /
 M

e
V

0.5

1.0

1.5

2.0

2.5
analysis threshold

 oscillation!2

y MiniBooNE data

µ!g expected background

µ!e!"µ! BG + best-fit 

 backgroundµ! 

 backgrounde! 

300 600 900 1200 1500

e
x
c
e
s
s
 e

v
e
n

ts
 /
 M

e
V

0.0

0.2

0.4

0.6

0.8

  (MeV)!reconstructed E

3000

 data - expected background

e!"µ! best-fit 

µ!
2=1.0 eV2m#)=0.004, $(22 sin

µ!
2=0.1 eV2m#)=0.2, $(22 sin

 

FIG. 2: The top plot shows the number of candidate νe events
as a function of EQE

ν . The points represent the data with sta-
tistical error, while the histogram is the expected background
with systematic errors from all sources. The vertical dashed
line indicates the threshold used in the two-neutrino oscilla-
tion analysis. Also shown are the best-fit oscillation spec-
trum (dashed histogram) and the background contributions
from νµ and νe events. The bottom plot shows the number of
events with the predicted background subtracted as a func-
tion of EQE

ν , where the points represent the data with total
errors and the two histograms correspond to LSND solutions
at high and low ∆m2.

A single-sided raster scan to a two neutrino
appearance-only oscillation model is used in the energy
range 475 < EQE

ν < 3000 MeV to find the 90% CL limit
corresponding to ∆χ2 = χ2

limit − χ2
bestfit = 1.64. As

shown in Fig. 3, the LSND 90% CL allowed region is ex-
cluded at the 90% CL. A joint analysis of the two results
excludes at 98% CL two-neutrino appearance oscillations
as an explanation of the LSND anomaly.

A separate analysis developed simultaneously and with
the same blindness criteria used a different set of recon-
struction programs, PID algorithms, and fitting and nor-
malization processes. The reconstruction used a simpler

model of light emission and propagation. The PID used
172 quantities such as charge and time likelihoods in an-
gular bins, Mγγ , and likelihood ratios (electron/ pion
and electron/muon) as inputs to boosted decision tree
algorithms [30] that are trained on sets of simulated sig-
nal events and background events with a cascade-training
technique [31]. In order to achieve the maximum sensi-
tivity to oscillations, the νµ-CCQE data sample with two
subevents were fit simultaneously with the νe-CCQE can-
didate sample with one subevent. By forming a χ2 using
both data sets and using the corresponding covariance
matrix to relate the contents of the bins of the two dis-
tributions, the errors in the oscillation parameters that
best describe the νe-CCQE candidate data set were well
constrained by the observed νµ-CCQE data. This pro-
cedure is partially equivalent to doing a νe to νµ ratio
analysis where many of the systematic uncertainties can-
cel.

The two analyses are very complementary, with the
second having a better signal-to-background ratio, but
the first having less sensitivity to systematic errors from
detector properties. These different strengths resulted in
very similar oscillation sensitivities and, when unblinded,
they yielded very similar oscillation fit results. Based on
the predicted sensitivities before unblinding, we decided
to present the first analysis as our oscillation result, with
the second as a powerful cross-check.

In summary, while there is a presently unexplained
discrepancy with data lying above background at low
energy, there is excellent agreement between data and
prediction in the oscillation analysis region. If the oscil-
lations of neutrinos and antineutrinos are the same, this
result excludes two neutrino appearance-only oscillations
as an explanation of the LSND anomaly at 98% CL.

We acknowledge the support of Fermilab, the Depart-
ment of Energy, and the National Science Foundation.
We thank Los Alamos National Laboratory for LDRD
funding. We acknowledge Bartoszek Engineering for the
design of the focusing horn. We acknowledge Dmitri Top-
tygin, Anna Pla, and Hans-Otto Meyer for optical mea-
surements of mineral oil. This research was done using
resources provided by the Open Science Grid, which is
supported by the NSF and DOE-SC. We also acknowl-
edge the use of the LANL Pink cluster and Condor soft-
ware in the analysis of the data.
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Forthcoming MiniBooNE data

1. Neutrino data down to 100 MeV

2. 18 months of anti-neutrino data

3. NUMI data, at 50% that of recently published data

4. SciBooNE (detector at 100m) data

5. longer term, perhaps 
           a. the BooNE detector at a km

  b. liquid argon R&D vessel
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Oscillation Phase from Bulk Travel / LIV

New Physics Interpretation of the Resonant Feature in the mini-BooNE Spectrum

Thomas J. Weiler1
1Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

blah blah blah

INTRODUCTION

The newly released data from the miniBooNe experiment shows no evidence for two-flavor active-sterile oscillations
at higher energies (475-3000 MeV), but an interesting enhancement in the lower-energy data, presented with 3.7 σ
confidence level [1]. While this is not enough significance to claim a discovery, it is nonetheless intriguing. It is
especially intriguing in light of previously published models which accommodate the LSND result, and predict just
such a spectrum. As we demonstrate below, this class of models may be viewed either as superluminal travel of
the gauge-singlet sterile neutrino in extra dimensions [2], or alternativley as Lorentz violation for sterile neutrinos as
viewed from our four-dimensional spacetime [3, 4]. Below we also show the remarkable agreement between this class
of model and the new “miniBooNE anomaly”.

FORMALISM

The quantum mechanics of the aforementioned models is simple. The flavor-oscillation amplitude for a propagating
neutrino is

A(να → νβ) = 〈να| e−iHt|νβ〉 . (1)

The component of Ht which is common (i.e., proportional to the identity) cannot effect flavor change, so we may
subtract it. We write the remainder as δ(Ht). With the assumption that the non-common contributions are small,
we may further expand δ(Ht) as (δH)t + H(δt). We are left with

A(να → νβ) = 〈να| e−i[(δH)t+H(δt)]|νβ〉 . (2)

As in standard oscillations, δH is diagonal in the mass-basis, and at lowest order is equal to

δH =
1

2 E
diag(m2

1, m
2
2, · · · ) . (3)

Upon inserting complete sets of mass-eigenstates before and after e−i(δH)t in (2), the first term there becomes
1

2 E

∑
j Uαj U∗

βj e−im2
j t; the usual definition of the bases-mixing matrix

Uαj = 〈να | νj〉, or equivalently, |να〉 = U∗
αj |j〉 . (4)

has been employed.
A nonvanishing value for the second term in (2) is non-conventional. A nonvanishing contribution occurs if the

propagation times for the neutrino states are not universal. Such a theory assigns different “light-cones” to different
states, thereby breaking Lorentz invariance. Conversely, a large class of models with Lorentz Invariance Violation
(LIV) has been shown to be phenomenologically equivalent to state-dependent limiting velocities [3, 4]. We note that
with differing velocities, one has δt = δ(L/v) = −L δv/v2, which is −L δv to lowest order. It is most natural to assign
the limiting velocities to the interaction flavor eigenstates. In this case, the second term in (2) as written is already
in a diagonal basis, and is equal to

δ t = diag(δtα, δtβ , · · · ) = −L diag(δvα, δvβ , · · · ) . (5)

Putting the two terms together, we are led to the following oscillation amplitude

A(να → νβ) =
∑

j

Uαj U∗
βj e−i

m2
j L

2 E + δαβ e+iLδvα . (6)
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two phase sources;
can cancel each other at Resonance

Alternatively, one may view (delta t) from the brane point of view as an apparent violation of Lorentz Invariance:



Exotic Neutrinos at Brookhaven, 1Apr08 Tom Weiler,  Vanderbilt University

2

It is conventional to put the physics of (6) into a Hamiltonian framework. From (6) we get immediately the following
effective neutrino Hamiltonian in the flavor basis:

H (F ) =
1

2 E
U





m2
1 0 0 0

0 m2
2 0 0

0 0 m2
3 0

0 0 0 m2
4



 U † − E





δv1 0 0 0
0 δv2 0 0
0 0 δv3 0
0 0 0 δv4



 (7)

In general, the 4x4 mixing matrix U consists of six angles (the number of planes in four dimensions) and four
phases. To simplify the analysis, we will neglect the three new phases, and set to zero the rotation angles in the 4-2
and 4-1 planes. By keeping the θ43 angle in R43 nonzero, we retain the basic features of the model. So we have

U =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43



 (8)

in the absence of the new term proportional to δv’s. Here, U3×3 is the usual PMNS mixing-matrix among the three
active-flavor neutrinos, and

R43 =
(

cos θ43 sin θ43

− sin θ43 cos θ43

)
(9)

We next write ∆LSND ≡ m2
4 − m2

3, and further neglect the light masses m2
j , j = 1, 2, 3 relative to m2

4. We assume
the active neutrino flavors have the usual limiting velocity c, whereas the sterile flavor has a superluminal limiting
velocity ε ≡ δv4 > 0. This seems to us to be the most economic and intuitive application of possibly-differing
limiting-velocities. The sterile state is qualitatively different from active states in that it has no gauge interactions,
and therefore is unconstrained by gauge symmetries. We provide more discussion of a qualitatively different sterile
neutrino below.

With these assumptions, the effective Hamiltonian in (7) may be written as

H (F ) =
(

U3×3 0
0 1

)



1

2 E




1 0 0
0 1 0
0 0 R43









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆LSND








1 0 0
0 1 0
0 0 RT

43



 − E ε





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









(
U †

3×3 0
0 1

)
(10)

The qualitative features of H in Eq. (10) provide an interesting discussion. First of all, the second term on the rhs,
diagonal in the flavor basis, has an analogy with the famous MSW matter-term. Accordingly, resonance enhancement
of the mixing angles may occur. At sufficiently low energies, the first term on the rhs of H dominates, and oscillations
proceed in the standard way. At sufficiently high energies, the second rhs term in H dominates, the eigenstates of
the Hamiltonian are nearly flavor states, and oscillations are very suppressed. At some intermediate value of energy,
the two terms are comparable, and resonant behavior may occur. Resonant behavior occurs if the mixing angle can
reach the maximal-mixing value of 45◦.

The matrix in brackets in (10) is equal to

∆LSND

2 E





0 0 0 0
0 0 0 0
0 0 s2

43 s43 c43

0 0 s43 c43

(
c2
43 − 2E2ε

∆LSND

)




, (11)

and is diagonalized by the rotation R̃43 through an angle θ̃43 given implicitly by

tan 2θ̃ =
sin 2θ43

cos 2θ43 − 2ε E2/∆LSND
, (12)

or equivalently, by

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + (cos 2θ43 − 2ε E2/∆LSND)2
. (13)

where eps = (delta t)/t = (delta x)/x = (delta v)/v .

3

Thus, the matrix which diagonalizes the full Hamiltonian H (F ) is

Ũ =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43(θ̃)



 =





Ve1 Ve2 Ve3 cos θ̃ Ve3 sin θ̃
Vµ1 Vµ2 Vµ3 cos θ̃ Vµ3 sin θ̃
Vτ1 Vτ2 Vτ3 cos θ̃ Vτ3 sin θ̃
0 0 − sin θ̃ cos θ̃



 (14)

where for brevity we have defined V = U3×3.
The energy-dependent angle θ̃ is obtained by taking the inverse sine of Eq. (13) (or (17) to come to later), or the

inverse tangent of (12) ((16)). Care must be taken to ensure that θ̃ is chosen in the first octant for E < ER, and in
the second octant for E > ER. the functions sin θ̃ and cos θ̃ are then readily obtained.

Resonant mixing occurs when the two diagonal elements in Eq. (11) are equal, i.e. when

ER =
√

cos 2θ43 ∆LSND

2ε
. (15)

We note some significant features of this result. First of all, since cos 2θ43 is positive definite for small θ43, resonance
can occur only if ∆LSND and ε have the same sign. Cosmological limits on neutrino masses disallow

∑3
j=1 mj ≥

3
√
|∆LSND| ∼ 3 eV, so ∆LSND must be positive. Thus, resonance is possible only if δvs > 0. One possibility is to have

limiting velocities vs = c, va < c. the other possibility, which we assumed above, is to have va = c and a superluminal
vs [5] This latter possibility is discussed more below.

We may rewrite Eqs. (12) and (13) in terms of ER. The result is

tan 2θ̃ =
tan 2θ43

1 −
(

E
ER

)2 , (16)

and

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + cos2 2θ43

(
1 −

(
E

ER

)2
)2 . (17)

There are two distinct qualitative differences between the LIV resonance inherent in (10), and the MSW matter-
resonance. First of all, the LIV term here grows with energy, whereas the matter term in the MSW Hamiltonian does
not. This means that the LIV resonance will be narrower than an MSW resonance. In other words, a measurement of
the FWHM becomes a signature of the LIV resonance. The second qualititative difference is that the LIV resonance
here does not violate CPT, whereas the MSW resonance necessarily does. This means that the LIV resonance will
occur identically in the both neutrino and antineutrino channels, in contrast to the MSW resonance.

The eigenvalues of (11) are easily found. Notice that they are also the eigenvalues of the full Hmailtonian given in
Eq. (10). The eigenvalues are

λ1 = λ2 = 0, λ4/3 ≡ λ± =
∆LSND

4E



1 − cos 2θ43

(
E

ER

)2

±

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2



 . (18)

The eigenvalue differences δHkj ≡ λk − λj are

δH43 = λ+ − λ− =
∆LSND

2E

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2

δH42 = δH41 = λ+

δH32 = δH31 = λ−

δH21 = 0 (19)

NOTE THAT IN THE THREE NEUTRINO MODEL OF PPW, there is no “1” state, and so the three δH ’s, namely
δH43, δH42, and δH32, are all of the same magnitude in the resonance region.

2

It is conventional to put the physics of (6) into a Hamiltonian framework. From (6) we get immediately the following
effective neutrino Hamiltonian in the flavor basis:

H (F ) =
1

2 E
U





m2
1 0 0 0

0 m2
2 0 0

0 0 m2
3 0

0 0 0 m2
4



 U † − E





δv1 0 0 0
0 δv2 0 0
0 0 δv3 0
0 0 0 δv4



 (7)

In general, the 4x4 mixing matrix U consists of six angles (the number of planes in four dimensions) and four
phases. To simplify the analysis, we will neglect the three new phases, and set to zero the rotation angles in the 4-2
and 4-1 planes. By keeping the θ43 angle in R43 nonzero, we retain the basic features of the model. So we have

U =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43



 (8)

in the absence of the new term proportional to δv’s. Here, U3×3 is the usual PMNS mixing-matrix among the three
active-flavor neutrinos, and

R43 =
(

cos θ43 sin θ43

− sin θ43 cos θ43

)
(9)

We next write ∆LSND ≡ m2
4 − m2

3, and further neglect the light masses m2
j , j = 1, 2, 3 relative to m2

4. We assume
the active neutrino flavors have the usual limiting velocity c, whereas the sterile flavor has a superluminal limiting
velocity ε ≡ δv4 > 0. This seems to us to be the most economic and intuitive application of possibly-differing
limiting-velocities. The sterile state is qualitatively different from active states in that it has no gauge interactions,
and therefore is unconstrained by gauge symmetries. We provide more discussion of a qualitatively different sterile
neutrino below.

With these assumptions, the effective Hamiltonian in (7) may be written as

H (F ) =
(

U3×3 0
0 1

)



1

2 E




1 0 0
0 1 0
0 0 R43









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆LSND








1 0 0
0 1 0
0 0 RT

43



 − E ε





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









(
U †

3×3 0
0 1

)
(10)

The qualitative features of H in Eq. (10) provide an interesting discussion. First of all, the second term on the rhs,
diagonal in the flavor basis, has an analogy with the famous MSW matter-term. Accordingly, resonance enhancement
of the mixing angles may occur. At sufficiently low energies, the first term on the rhs of H dominates, and oscillations
proceed in the standard way. At sufficiently high energies, the second rhs term in H dominates, the eigenstates of
the Hamiltonian are nearly flavor states, and oscillations are very suppressed. At some intermediate value of energy,
the two terms are comparable, and resonant behavior may occur. Resonant behavior occurs if the mixing angle can
reach the maximal-mixing value of 45◦.

The matrix in brackets in (10) is equal to

∆LSND

2 E





0 0 0 0
0 0 0 0
0 0 s2

43 s43 c43

0 0 s43 c43

(
c2
43 − 2E2ε

∆LSND

)




, (11)

and is diagonalized by the rotation R̃43 through an angle θ̃43 given implicitly by

tan 2θ̃ =
sin 2θ43

cos 2θ43 − 2ε E2/∆LSND
, (12)

or equivalently, by

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + (cos 2θ43 − 2ε E2/∆LSND)2
. (13)

Brane-Bulk resonance with single-(new)angle assumption

[same for nu and nubar]

[same for nu and nubar]
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Parameter-count
New parameters are
 
1.  theta_43
2.   

which together specify the running

3.             ,  which affects resonance length

3

Thus, the matrix which diagonalizes the full Hamiltonian H (F ) is

Ũ =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43(θ̃)



 =





Ve1 Ve2 Ve3 cos θ̃ Ve3 sin θ̃
Vµ1 Vµ2 Vµ3 cos θ̃ Vµ3 sin θ̃
Vτ1 Vτ2 Vτ3 cos θ̃ Vτ3 sin θ̃
0 0 − sin θ̃ cos θ̃



 (14)

where for brevity we have defined V = U3×3.
The energy-dependent angle θ̃ is obtained by taking the inverse sine of Eq. (13) (or (17) to come to later), or the

inverse tangent of (12) ((16)). Care must be taken to ensure that θ̃ is chosen in the first octant for E < ER, and in
the second octant for E > ER. the functions sin θ̃ and cos θ̃ are then readily obtained.

Resonant mixing occurs when the two diagonal elements in Eq. (11) are equal, i.e. when

ER =
√

cos 2θ43 ∆LSND

2ε
. (15)

We note some significant features of this result. First of all, since cos 2θ43 is positive definite for small θ43, resonance
can occur only if ∆LSND and ε have the same sign. Cosmological limits on neutrino masses disallow

∑3
j=1 mj ≥

3
√
|∆LSND| ∼ 3 eV, so ∆LSND must be positive. Thus, resonance is possible only if δvs > 0. One possibility is to have

limiting velocities vs = c, va < c. the other possibility, which we assumed above, is to have va = c and a superluminal
vs [5] This latter possibility is discussed more below.

We may rewrite Eqs. (12) and (13) in terms of ER. The result is

tan 2θ̃ =
tan 2θ43

1 −
(

E
ER

)2 , (16)

and

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + cos2 2θ43

(
1 −

(
E

ER

)2
)2 . (17)

There are two distinct qualitative differences between the LIV resonance inherent in (10), and the MSW matter-
resonance. First of all, the LIV term here grows with energy, whereas the matter term in the MSW Hamiltonian does
not. This means that the LIV resonance will be narrower than an MSW resonance. In other words, a measurement of
the FWHM becomes a signature of the LIV resonance. The second qualititative difference is that the LIV resonance
here does not violate CPT, whereas the MSW resonance necessarily does. This means that the LIV resonance will
occur identically in the both neutrino and antineutrino channels, in contrast to the MSW resonance.

The eigenvalues of (11) are easily found. Notice that they are also the eigenvalues of the full Hmailtonian given in
Eq. (10). The eigenvalues are

λ1 = λ2 = 0, λ4/3 ≡ λ± =
∆LSND

4E



1 − cos 2θ43

(
E

ER

)2

±

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2



 . (18)

The eigenvalue differences δHkj ≡ λk − λj are

δH43 = λ+ − λ− =
∆LSND

2E

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2

δH42 = δH41 = λ+

δH32 = δH31 = λ−

δH21 = 0 (19)

NOTE THAT IN THE THREE NEUTRINO MODEL OF PPW, there is no “1” state, and so the three δH ’s, namely
δH43, δH42, and δH32, are all of the same magnitude in the resonance region.
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Thus, the matrix which diagonalizes the full Hamiltonian H (F ) is

Ũ =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43(θ̃)



 =





Ve1 Ve2 Ve3 cos θ̃ Ve3 sin θ̃
Vµ1 Vµ2 Vµ3 cos θ̃ Vµ3 sin θ̃
Vτ1 Vτ2 Vτ3 cos θ̃ Vτ3 sin θ̃
0 0 − sin θ̃ cos θ̃



 (14)

where for brevity we have defined V = U3×3.
The energy-dependent angle θ̃ is obtained by taking the inverse sine of Eq. (13) (or (17) to come to later), or the

inverse tangent of (12) ((16)). Care must be taken to ensure that θ̃ is chosen in the first octant for E < ER, and in
the second octant for E > ER. the functions sin θ̃ and cos θ̃ are then readily obtained.

Resonant mixing occurs when the two diagonal elements in Eq. (11) are equal, i.e. when

ER =
√

cos 2θ43 ∆LSND

2ε
. (15)

We note some significant features of this result. First of all, since cos 2θ43 is positive definite for small θ43, resonance
can occur only if ∆LSND and ε have the same sign. Cosmological limits on neutrino masses disallow

∑3
j=1 mj ≥

3
√
|∆LSND| ∼ 3 eV, so ∆LSND must be positive. Thus, resonance is possible only if δvs > 0. One possibility is to have

limiting velocities vs = c, va < c. the other possibility, which we assumed above, is to have va = c and a superluminal
vs [5] This latter possibility is discussed more below.

We may rewrite Eqs. (12) and (13) in terms of ER. The result is

tan 2θ̃ =
tan 2θ43

1 −
(

E
ER

)2 , (16)

and

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + cos2 2θ43

(
1 −

(
E

ER

)2
)2 . (17)

There are two distinct qualitative differences between the LIV resonance inherent in (10), and the MSW matter-
resonance. First of all, the LIV term here grows with energy, whereas the matter term in the MSW Hamiltonian does
not. This means that the LIV resonance will be narrower than an MSW resonance. In other words, a measurement of
the FWHM becomes a signature of the LIV resonance. The second qualititative difference is that the LIV resonance
here does not violate CPT, whereas the MSW resonance necessarily does. This means that the LIV resonance will
occur identically in the both neutrino and antineutrino channels, in contrast to the MSW resonance.

The eigenvalues of (11) are easily found. Notice that they are also the eigenvalues of the full Hmailtonian given in
Eq. (10). The eigenvalues are

λ1 = λ2 = 0, λ4/3 ≡ λ± =
∆LSND

4E



1 − cos 2θ43

(
E

ER

)2

±

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2



 . (18)

The eigenvalue differences δHkj ≡ λk − λj are

δH43 = λ+ − λ− =
∆LSND

2E

√√√√sin2 2θ43 + cos2 2θ43

[
1 −

(
E

ER

)2
]2

δH42 = δH41 = λ+

δH32 = δH31 = λ−

δH21 = 0 (19)

NOTE THAT IN THE THREE NEUTRINO MODEL OF PPW, there is no “1” state, and so the three δH ’s, namely
δH43, δH42, and δH32, are all of the same magnitude in the resonance region.
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It is conventional to put the physics of (6) into a Hamiltonian framework. From (6) we get immediately the following
effective neutrino Hamiltonian in the flavor basis:

H (F ) =
1

2 E
U





m2
1 0 0 0

0 m2
2 0 0

0 0 m2
3 0

0 0 0 m2
4



 U † − E





δv1 0 0 0
0 δv2 0 0
0 0 δv3 0
0 0 0 δv4



 (7)

In general, the 4x4 mixing matrix U consists of six angles (the number of planes in four dimensions) and four
phases. To simplify the analysis, we will neglect the three new phases, and set to zero the rotation angles in the 4-2
and 4-1 planes. By keeping the θ43 angle in R43 nonzero, we retain the basic features of the model. So we have

U =
(

U3×3 0
0 1

)
×




1 0 0
0 1 0
0 0 R43



 (8)

in the absence of the new term proportional to δv’s. Here, U3×3 is the usual PMNS mixing-matrix among the three
active-flavor neutrinos, and

R43 =
(

cos θ43 sin θ43

− sin θ43 cos θ43

)
(9)

We next write ∆LSND ≡ m2
4 − m2

3, and further neglect the light masses m2
j , j = 1, 2, 3 relative to m2

4. We assume
the active neutrino flavors have the usual limiting velocity c, whereas the sterile flavor has a superluminal limiting
velocity ε ≡ δv4 > 0. This seems to us to be the most economic and intuitive application of possibly-differing
limiting-velocities. The sterile state is qualitatively different from active states in that it has no gauge interactions,
and therefore is unconstrained by gauge symmetries. We provide more discussion of a qualitatively different sterile
neutrino below.

With these assumptions, the effective Hamiltonian in (7) may be written as

H (F ) =
(

U3×3 0
0 1

)



1

2 E




1 0 0
0 1 0
0 0 R43









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ∆LSND








1 0 0
0 1 0
0 0 RT

43



 − E ε





0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1









(
U †

3×3 0
0 1

)
(10)

The qualitative features of H in Eq. (10) provide an interesting discussion. First of all, the second term on the rhs,
diagonal in the flavor basis, has an analogy with the famous MSW matter-term. Accordingly, resonance enhancement
of the mixing angles may occur. At sufficiently low energies, the first term on the rhs of H dominates, and oscillations
proceed in the standard way. At sufficiently high energies, the second rhs term in H dominates, the eigenstates of
the Hamiltonian are nearly flavor states, and oscillations are very suppressed. At some intermediate value of energy,
the two terms are comparable, and resonant behavior may occur. Resonant behavior occurs if the mixing angle can
reach the maximal-mixing value of 45◦.

The matrix in brackets in (10) is equal to

∆LSND

2 E





0 0 0 0
0 0 0 0
0 0 s2

43 s43 c43

0 0 s43 c43

(
c2
43 − 2E2ε

∆LSND

)




, (11)

and is diagonalized by the rotation R̃43 through an angle θ̃43 given implicitly by

tan 2θ̃ =
sin 2θ43

cos 2θ43 − 2ε E2/∆LSND
, (12)

or equivalently, by

sin2 2θ̃ =
sin2 2θ43

sin2 2θ43 + (cos 2θ43 − 2ε E2/∆LSND)2
. (13)

To fit 
1. LSND excess spectrum
2. MiniBooNE excess, width and null spectrum
3. Bugey, CDHS, .... null results
4. Long-baseline Solar and Atmospheric is Non Trivial !
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Two fitting “philosophies” :

    First is to fit all DATA with the three parameters, 
and see what happens. [Huber]
A: great chi-square and pgof, LSND is “real”, MiniBooNE is not

Second is to force a fit to LSND AND MiniBooNE excesses,
and check the chisquare. [Paes and Weiler]
A: Has not yet been done, but have Paes “typical” Figures:
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MiniBooNE
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PPW formulas
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4

With the eigenvalue differences given in Eq. (19), and the mixing matrix given in Eq. (14), we have all the ingredients
to obtain all possible oscillation probabilities. Furthermore, in the model as presented, there are just three parameters
beyond the standard three-neutrino parameters. These are ∆LSND ∼ 1eV2, θ43, and ER.

The general oscillation formulas are

P (να → νβ) = δαβ − 4
∑

j<k

${Ũβj Ũ∗
βk Ũ∗

αj Ũαk} sin2

(
L δHkj

2

)
+ 2

∑

j<k

%{Ũβj Ũ∗
βk Ũ∗

αj Ũαk} sin (L δHkj) . (20)

Along with Eqs. (14), (18), and (19), Eq. (20) provides the formula to be fitted to the world’s data, including especially
the LSND anomaly and the newly-reported miniBooNE low-energy anomaly.

Let us ignore phases in U . The oscillation probability becomes

P (να → νβ) = δαβ − 4
∑

j<k

Ũβj Ũβk Ũαj Ũαk sin2

(
L δHkj

2

)
, (21)

which for the present case reduces to

P (να → νβ) = δαβ − 4 ×






sin2
(

L (λ+−λ−)
2

)
Ũβ3 Ũβ4 Ũα3 Ũα4

+ sin2
(

L λ+
2

) ∑
j=1,2 Ũβj Ũβ4 Ũαj Ũα4

+ sin2
(

L λ−
2

) ∑
j=1,2 Ũβj Ũβ3 Ũαj Ũα3 .

(22)

Just as ER sets the energy scale for the resonance, length scale for the resonance maximum is set by an interplay
of the various

LR ≡ π

|δHjk|
. (23)

The maximum resonance phenomenon occurs at (E, L) = (ER, LR). Substituting E = ER into (19), and this into
(23), gives the optimized length for resonance enhancement. The result is

L+−
R ≡ π

λ+ − λ−
=

2π

sin 2θ43

E

∆LSND
=

500 meters
sin 2θ43

× (E/400MeV)
(∆LSND/eV2)

, (24)

and

L±
R ≡ π

|λ±|
=

4π

(sin 2θ43 ± sin2 θ43)
≈ 2 L+−

R . (25)

Since the mini-BooNE decay length is approxiamtely 500 meters, we learn that the miniBooNE event excess around
300-400 MeV is optimized if (sin 2θ43 ∆LSND) is of order 1-2 eV2.

We note that the 1-2 submatrix of Ũ is the same as that of the PMNS matrix V . The matrix V , like Ũ , is
unitary. Thus,

∑
j=1,2 Ũαj Ũβj = δαβ − Vα3 Vβ3. Using this replacement,and the explicit matrix entries inthe third

and fourth columns of (14), we arrive at simpler expressions for the three relevant cases, active neutrino survival,
active-to-active neutrino conversion, and active-to-sterile conversion. Denote the active flavors by a, b, · · · . The active
neutrino survival probability is given by

P (νa → νa) = δαβ − 4 V 2
a3 ×






sin2
(

L (λ+−λ−)
2

)
sin2 θ̃ cos2 θ̃ V 2

a3

+ sin2
(

L λ+
2

)
sin2 θ̃ (1 − V 2

a3)

+ sin2
(

L λ−
2

)
cos2 θ̃ (1 − V 2

a3) .

(26)

The active-to-(different)active neutrino conversion probability is given by (and note the minus sign on the first term
in brackets)

P (νa → νb) = 4 V 2
a3 V 2

b3 ×






− sin2
(

L (λ+−λ−)
2

)
sin2 θ̃ cos2 θ̃

+ sin2
(

L λ+
2

)
sin2 θ̃

+ sin2
(

L λ−
2

)
cos2 θ̃ .

(27)

PPW formulas (continued)

Barger, Huber, Learned, Marfatia, PPW (in progress)
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Summary so far:
Bulk Travel/Lorentz Violation on the brane can yield a 
resonance in the 30-500 MeV region, thereby isolating low-energy 
LSND from “high” energy CDHS.
This may allow the 3+1 neutrino spectrum to describe all neutrino 
data with just one theta_4j     [or not].

The resonance may or may not reveal itself in the intermediate 
energy data of MiniBoone.

The resonance certainly reveals itself in the proposed low-energy 
SNS-Oscillation Xpt.

The more natural model with two or three theta_4j angles is under 
investigation.  It requires numerical diagonalization of a 4x4 or 3x3 
mixing matrix, so few analytical insights.
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      Time-Travel is a chicken-wire topic
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Time-Traveling (research for the tenured only):
     Even

+

Classic Tipler-vanStockum and Goedel
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CTCs (continued)

If                 then one root allows a circular orbit in negative time:
-

-

+



Exotic Neutrinos at Brookhaven, 1Apr08 Tom Weiler,  Vanderbilt University

Warped-Space CTC:



Exotic Neutrinos at Brookhaven, 1Apr08 Tom Weiler,  Vanderbilt University

5D does not Time-Travel

It is not hard to show that this cannot be done in 5D.
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A constructed “geodesic”
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6D Time Travel
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NewSci Cover

It’s a relative 
    concept
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The νs Time-Traveller:
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Energy Conditions and Consistency
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On-brane Off-brane
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In Summary,

Nature has real opportunities 

with Sterile Neutrinos

I hope She realizes this!


