
Some puzzles in the Quark Gluon Plasma

How do the phase transition(s) change as a function of: 
SUSY, Nc = 3...∞, pure glue vs + quarks....

Puzzles:

Pure glue: strings persist in the deconfined phase, above Td?

Is the deconfining transition at Nc = ∞ special (T ≠ 0, μ = 0)?

Baryons at large Nc: di-quark pairing or coherent field?

Neutron stars at 2 M⊙ and "stiff" Equations Of State?

Quantum thermalization in small systems?
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Strings in the deconfined phase for pure SU(N)?

"Hidden" scaling of the pressure near Td (M. Panero)

Must be strings.
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Lattice: usual thermodynamics, pure SU(3)
Pure SU(3): no quarks.  Peak in (e-3p)/T4, just above Td.  
Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

long tail?

↑ Td 2.5 Td ↑

e� 3p

T 4
⇥
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Lattice: hidden scaling of the pressure, pure SU(3)
(e-3p)/T4 x (T2/Td2) approximately constant near Tc: 
                                Meisinger, Miller, & Ogilvie, ph/0108009; RDP, ph/0608242
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WHOT: Umeda, Ejiri, Aoki, 
Hatusda, Kanaya, Maezawa, 
Ohno, 0809.2842

T/Td→

 Find: T > 1.2 Td: constant => 
                   p(T) ~ # T2 

T < 1.2 Td: transition region.  Narrow?
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p(T ) ⇡ #(T 4 � c T 2
d T 2) , c = 1.00± .01
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Lattice: hidden scaling, pure SU(3)

Borsanyi, Endrodi, Fodor, Katz,& 
Szabo, 1204.6184 10 Td ↑↑ Tc

Td→4 Td:
For pressure, leading
corrections to ideality, T4, 
are T2.  Not as flat as WHOT.
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Sunday, July 21, 13



Comparison to (resummed) perturbation theory
Perturbative contribution to e-3p ~ g4 , from trace anomaly
HTL pert. theory at NNLO: Andersen, Leganger, Strickland, & Su, 1105.0514
Clear excess above perturbative below 5 Td.

e� 3p
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Lattice: hidden scaling, pure SU(N), N=3...8
Pure SU(N):  1/(N2-1)(e-3p)/(T2 Td2) ~ constant near Td, independent of N
                                                

Td ↑

Panero, 0907.3719;
Datta & Gupta, 
1006.0938;
Lucini & Panero, 
1210.4997 3Td ↑

1

pSB/T 4
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T 4
"
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Just mass expansion?
For a free massive boson, if m << T,

Choose                                    
                                                              
For general m, (e-3p)/T2  (E = √k2 + m2) :

p(T ) ⇡ ⇡2

90

✓
T 4 � 15

4⇡2
m2 T 2 + . . .

◆

e� 3p

T 2
=

m2

2⇡2

1

T 2

Z
dk

E

k2

eE/T � 1

For above m2, 
test small mass exp.
(e-3p)/T2 is not flat
for T ~ Td.

Term ~ T2 in pressure
in 3+1 dimensions
is nontrivial

Td " 4Td "
T !

1

⇡2T 2
d /45

e� 3p

T 2
"

m2 =
4⇡2

15
T 2
d

1.0 !

p(T ) ⇡ (⇡2/90)(T 4 � T 2
dT

2 + . . .)

Sunday, July 21, 13



Lattice: hidden scaling, pure SU(N) in 2+1 dimensions
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T2-dependence in the trace of the energy-momentum tensor
Nt = 6 lattices

1
N2 � 1

e� 2p

T 3
"

Td/T→

↑ 10 Td ↑ 1.1 Td↑ 2 Td

Caselle, 
Castagnini, Feo, 
Gliozzi, Gursoy,
Panero, Schafer, 
1111.0580

In 2+ 1 dimensions, hidden scaling again ~ T2: not a mass term, ~ m2 T:

p(T ) ⇡ #(T 3 � c Td T
2) , c ⇡ 1.
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Do stringy effects persist above Td?

For pure SU(N) gauge, lattice finds corrections to ideality are always ~ T2 :

Stringy: ~ T2 is the free energy of massless fields in two dimensions

Not stringy: in deconfined phase, above Hagedorn temperature

       For SU(N), contributes to pressure ~ N2, and not ~ N0: strings color singlets?

With dynamical quarks: data not clear.

N.B.: only clear with precise lattice data
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Pure SU(∞) at the deconfining transition:

Gross-Witten-Wadia transition?

Exact solution at Td from AdS/CFT?
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QCD on a femtosphere
Consider pure SU(∞) on a spatial sphere so small that coupling is small 
Sundberg, th/9908001; 
Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk, th/0310285; th/0508077
Dumitru, Lenaghan, RDP, ph/0410294

Integrate out modes with J ≠ 0, obtain eff. theory for static modes, matrix model
Consider eigenvalues of Wilson line, L = exp(2 π i q)
Take Ai0 ~ qi , i = 1...N.  discrete sum Σi => ∫ dq ρ(q) .  

Solve by usual large N tricks.  At Td, eigenvalue density is

⇢(q) = 1 + cos(2⇡ q) , q : �1/2 ! 1/2

#|
Z

dq ⇢(q) e2⇡i q|2 +
Z

dq

Z
dq0 ⇢(q) ⇢(q0) log |e2⇡iq � e2⇡iq

0
|

N.B. in 2-dim.'s, Gross, Witten, & Wadia found 3rd order transition in lattice β.
Here, at any temperature, find 3rd order transition when 

` =
1

N
trL =

1

2
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Gross-Witten-Wadia transition at N=∞
Solution at N=∞: “critical first order” transition -  both first and second order
Latent heat nonzero ~ N2.   And specific heat diverges, Cv ~ 1/(T-Tc)3/5

Potential function of all tr Ln, n = 1, 2....  But at Td+, only first loop is nonzero:
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tr L
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`(T�
c ) = 0

tr Ln (Td) = 0 , n ≥ 2 

T = Td

Potential not 
analytic
at l = 1/2 ↓

Above only for g=0: to ~ g4, standard 1st order transition.  So GWW curiosity?
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Simple ansatz: constant, diagonal A0:

At 1-loop order, perturbative potential

Aij
0 =

2⇥T

g
qi �ij , i, j = 1 . . . N

Assume non-perturbative potential ~ T2 Td2:

Vpert(q) =
2�2

3
T 4

0

@� 4
15

(N2 � 1) +
X

i,j

q2
ij(1� qij)2

1

A , qij = |qi � qj |

Matrix models in infinite volume
Construct effective matrix model for deconfinement:
Meisinger, Miller, & Ogilvie, ph/0108009. 
A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1011.3820, 1205.0137; 
K. Kashiwa, V. Skokov & RDP, 1205.0545; K. Kashiwa & RDP, 1301.5344.
(Gauge invariant) variables eigenvalues of (thermal) Wilson line:

V
non

(q) =
2⇡2

3
T 2T 2

d

(� c1
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15
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Matrix models in infinite volume, N = ∞
Solve at N=∞: RDP & V. Skokov, 1206.1329; 
Interface tensions: S. Lin, RDP, & V. Skokov, 1301.7432

Vn(q) =

Z
dq

Z
dq0 ⇢(q) ⇢(q0) |q � q0|n(1� |q � q0|)n

Ve↵(q) = d1 V1 + d2 V2

Take derivatives of equation of motion, at Td solution

⇢(q) = 1 + cos(2⇡ q) , q : �1/2 ! 1/2

At Td, solution identical to GWW model on a femtosphere!  

Solution differs away from Td.  But why same solution at Td? Veff very different.

On a femtosphere, coupling is fixed, g2(1/R), couplings don't run.

But in infinite volume, coupling constants can flow: 

Is Gross-Witten-Wadia an infrared stable fixed point for pure gauge SU(∞)?
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Remnants of Gross-Witten-Wadia at finite N?
At finite N, solve model numerically.  Find two minima, at 0 and ~ 1/2.
Standard first order transition, with barrier & interface tension nonzero
Barrier disappears at infinite N: so interface tensions vanish at infinite N
Below: potential /(N2-1), versus tr L .

Veff (`)

N2 � 1
"

0↑ ↑ 1/2
h`i !
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Signs of GWW at finite N: interface tensions small at Td?
Consider maximum of previous figure, versus number of colors:
increases by ~ 2 from N = 3 to 5, then decreases monotonically as N increases
Perhaps: non-monotonic behavior of order-disorder interface tension with N?
Below: maximum in potential /(N2-1), versus tr L .

Lattice: order-disorder
interface tension αod at Td:
Lucini, Teper, Wegner, lat/0502003

V N
e↵

(`
max

)/(N2 � 1)
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e↵

(`
max

)/8
*

Coefficients small, χ2 large, ~ 2.8.
Non-monotonic behavior of αod /N2?
't Hooft loops also small near Td

Remnants of Gross-Witten-Wadia
fixed point at finite N?

↵od

N2T 3
d

= .014� .10

N2

N !
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Effective theory for deconfinement?

There's always some effective theory:

AdS/CFT?
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Matrix model: parameters from the lattice
Matrix model: choose variables as eigenvalues of thermal Wilson line

Choose 2 free parameters to fit:
latent heat at Td, (e-3p)/T4 at large T

Reasonable value for bag constant B:

e� 3p

8 T 4
"

↑ Td 3Td ↑T/Td→

 ⇐ Lattice  

 ⇐ 2-parameter model

Td = 270 MeV, B~ (262 MeV)4

Latent heat, lattice:
Beinlich, 
Peikert, Karsch 
lat/9608141
Datta, Gupta 
1006.0938

c1 = .88, c2 = .55, c3 = .95
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Matrix model: ‘t Hooft loop vs lattice
Matrix model works well:
Lattice: de Forcrand, D’Elia, & Pepe, lat/0007034;  de Forcrand & Noth lat/0506005
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Polyakov loop: vs lattice: huge discrepancy
Renormalized Polyakov loop from lattice nothing like Matrix Model
Model: transition region narrow, to ~ 1.2 Tc. Lattice: loop wide, to ~ 4.0 Tc.
Can alter parameters to fit Polyakov loop; do not fit latent heat with 2 parameters
Are the eigenvalues of the (thermal) Wilson line enough? Other variables?

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.
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Axial charge for heavy quarks:

Is gA ~ N at large N?
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Baryons at large N: gA ~ N?
Non-relativistic quark model: gA = (N+2)/3 ~ N at large N.  N = 3: gA = 5/3.  
But even for heavy quarks, gA ~ 1.  As mπ → 0, approaches gAexp~1.2 from below

Is gA ~ N at large N?  Diquark pairing?  Hidaka, Kojo, McLerran, RDP, 1004.0261  
Diquark pairing vs  pion cloud? T. Kojo 1208.5661

RBC + UKQCD, Yamazaki et al, 0801.4016.
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Equation Of State for cold, dense quarks:

severe constraints from neutron stars

EOS from AdS/CFT?
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Neutron stars

"Most" neutron stars:
masses ~ 1.4 M⊙, 
max. density ~ 2-3 ρ0 (nucl. matter)

Recently:

PSR J1614-2230 : 1.97 ± 0.04 M⊙ 

PSR J0348+0432: 2.01 ± 0.04 M⊙

These use a GR effect, Shapiro
time delay, to determine the mass

Other candidates with large masses,
but much larger errors.

Lattimer, 1305.3520; Prakash, 1307.0397   
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Neutron stars and "stiff" Equations Of State
To obtain M ~ 2 M⊙, need "stiff" Equation Of State
EOS "stiff" if speed of sound cs > c/√3.  Stiffest possible: cs = c.  

For M ~ 2 M⊙, need cs2 > 0.4 c2.   Lattimer, 1305.3520; Prakash, 1307.0397

p(µ) = +⇤2 µ2 + . . .

Severe constraint on EOS.

1st order transition:
cs = 0 in mixed phase

Strange quarks: 
new degrees of freedom
soften EOS.

Stiffest EOS:

Not like the T2 term in pressure: sign positive!
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HAL QCD, Inoue et al, 1307.0299: Determine VNN from lattice...input into EOS
Assume Mmax ~ a/(mπ + b) + c.  Not mπ2.  Can obtain Mmax ~ 2.2 M⊙, if:
No 1st order transition, no strange quark matter.  

Lattice & neutron stars
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Quantum thermalization in small systems

AdS/CFT? 
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EIGENSTATE THERMALIZATION

Initial state

A B

von Neumann, '29
Deutsch, '91, 
Srednicki, cond-mat/9403051; 
Rigol, Dunjko, Olshanii, 0708.1324 =>

Eigenstate thermalization hypothesis
In quantum mechanics, consider evolution in time for some operator A:

| (t)i = ⌃↵ C↵ e�iE↵t| ↵i ; A↵� = h ↵|A| �i

hA(t)i = ⌃↵,� C
⇤
↵C� e

�i(E↵�E�)tA↵� ⇡t!1 ⌃↵|C↵|2 A↵↵

At large times, only the diagonal elements survive:

Assume that one probes the system at high energy E, in a narrow interval ΔE:
eigenstate thermalization hypothesis:
each state close to thermal, 

hA(1)i ⇡ ⌃↵A↵↵

 ≈ microcanonical ensemble.  
"Quantum" thermalization for
isolated quantum systems.
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Urmossy, 1212.0260

Quantum thermalization in hadronic collisions
Assume quantum wave function has spread in temperature, with power law tail:
related to Tsallis statistics,

T0 = TTsallis/(1-q), α=1/(1-q) n(pt) =

Z
dT

e�T0/T

T↵+1
e�pt/T ⇠ 1

(1 + pt/T0)↵

Extremely successful fit to all hadronic
collisions: e+e-, pp, pA, AA.  For pp:

√s                      α                            T0

62                     14                         1600

200                   11                         1130

900                   8.6                          830

7000                 7.75                        767
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Await results from AdS/CFT!
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