
For Heavy Ions, will LHC be “like” RHIC?
1. Yes: small increase in elliptic flow, (appropriately scaled) multiplicity
            (Nearly) ideal hydro works 

       Consensus view?  

2. Sorta: elliptic flow smaller, (scaled) multiplicity higher
           Viscous hydro applies: how much does η/s increase?
           “Semi”-QGP: partial deconfinement near Tc: this talk today

3. Nothing like it: elliptic flow much larger; (scaled) multiplicity - much higher?
  Not “Wit-less”: Busza, arXiv: 0907.4719

           Terra incognita: non-equilbrium distribution 
  “Abandon all hope ye who enter here”?

           Perhaps: use kinetic theory to evolve Color Glass to “jetty” final state?

With Y. Hidaka, arXiv:0803.0453, 0906.1751, 0907.4609, 0912.0940
With A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes (DGHKP), 1010....
Related: T. Zhang, T. Brauner, & D. Rischke, 1005.2928.  

 O. Philipsen et al., 1010....
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Before, in Frankfurt....
Threw pile of string theory books in the trash
     Obi-Wan Ken-Robbie said to Miklos Gyulassy:

 “Don’t go over to the Dark Side (AdS/CFT), no, don’t do it!”
      I was the “most reactionary physicist on earth”  

      If RHIC is in a conformally invariant regime, and 
      if AdS/CFT is relevant for QCD, then
      unique predictions for LHC: in AdS/CFT, η/s is constant, even if “s” changes!

Juggled three balls (to illustrate triple point)
 
Today: Soon, a second Golden Era begins
     First Golden Era: RHIC
     Like high Tc superconductivity, wealth of data, 

but we still don’t know what’s going on

LHC: like RHIC, or not?  We’ll know by Xmas!  Ho ho ho!
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The semi-, versus the complete, Quark Gluon Plasma
Typical plasma in QED: e.g., H atoms
     No ionization: gas of H atoms
     Completely ionized plasma, e-‘s and p’s move freely of one another
     Partially ionized plasma: some H atoms, some free charges.  

QCD: deconfinement is the ionization of color charge
     No color charge ionized: confined phase.
     “Complete” Quark-Gluon Plasma (QGP): total ionization of color 
     “Semi”-QGP: partial ionization of color
     Complete QGP: above a “few” times Tc (= temperature for deconfinement)
     Semi-QGP: from a little bit below Tc, to a “few” times Tc

What is a “few” times times Tc?  What is the width of the semi-QGP?

If RHIC starts in the semi-QGP, and LHC starts in the complete QGP,
then for heavy ions, LHC will not be like RHIC.

(Many, many qualifications: LHC always cools through semi-QGP, etc....)
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Summary
Elementary model for confinement

     Integrating over an imaginary chemical potential
     Matrix model of the semi-QGP, versus Polyakov-Nambu-Jona-Lasino models
     How to compute: perturbation theory with “birdtrack” diagrams

Fun and games with birdtracks

     Dilepton production: not realistic, but illustrative
     Energy loss in the semi-QGP: plus uniform suppression of color charge
     Shear viscosity in the semi-QGP: 
           shear viscosity decreases, even though the cross section does as well

So how wide is the semi-QGP?
     Lattice: renormalized Polyakov loops indicate wide semi-QGP, to ~ 4 Tc.
     DGHKP, 1010.... : indirect measures indicate narrow semi-QGP, to ~ 1.5 Tc.

Experimentalists will know before we (theorists) will.
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Elementary model for confinement

Consider the Boltzmann distribution 
at a nonzero chemical potential, μ:

Let μ be imaginary, μ = i Q:

Q is clearly periodic, and runs from 0 to 2 π T.  
Now assume that the distribution in Q is flat.  Then the integral over Q vanishes,

which is confinement.  
For Bose-Einstein (+) or Fermi-Dirac (-) statistics, do Boltzmann expansion:

For a flat distribution, the integral of every term vanishes, so <n±(E-iQ)> = 0.

nB(E − iQ) = e−(E−iQ)/T

nB(E − µ) = e−(E−µ)/T

� 2πT

0
nB(E − iQ) dQ = e−E/T

� 2πT

0
eiQ/T dQ = 0

n±(E − iQ) =
1

e−(E−iQ)/T ∓ 1
= e(E−iQ)/T ± e−2(E−iQ)/T . . .
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Elementary model for partial deconfinement

Take a distribution which is flat, but only in a wedge:

This is a normalized density, 

x=0: only Q = 0.   “Complete” Quark-Gluon Plasma.

x=1: flat distribution of Q’s.  Confined phase, all distribution functions vanish.

1 < x < 0.  Q’s flop around.  Partial suppression of distribution functions.
“Semi”-QGP, partial deconfinement.

N.B.: The suppression of colored fields is independent of mass or momentum:
why RAA for charm quarks is ~ RAA for light quarks (pions)?

ρx(Q) =
1

2πx
θ

�
πx− |Q|

T

�

� 2πT

0
ρx(Q) dQ = 1
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Matrix model for semi-QGP
Color?  Thermal Wilson line L →
L is gauge variant, eigenvalues gauge invariant.  
For SU(Nc), Nc-1 eigenvalues.  
To represent non-trivial L,  perform a
semi-classical expansion in intermediate coupling about →
Qa :  a= 1...Nc.  with Σa=1Nc  Qa = 0, mod 2 π T.

At infinite Nc, the sum over eigenvalues becomes an integral over Q. 
Matrix model of the semi-QGP.  (Like SU(∞) on femtosphere:
Sundborg, hep-th/9908001; Aharony, Marsano, Minwalla, 
Papadodimas, & Van Raamsdonk, hep-th/0310285 & 0502149 )

X

X

X

 Nc = ∞  Nc = 3 

L = P exp

�
ig

� 1/T

0
A0 dτ

�

(Acl
0 )ab = δab Qa

g

7



Computing in the semi-QGP: energies with color
Generalize ‘t Hooft’s double line notation to finite Nc.
BTW, can derive any group theory identity by drawing “birdtracks” 
P. Cvitanovic, http://www.birdtracks.dk/

Computing semi-class.’y about A0cl is easy: energy p0 acquires color indices:
one for fields in the fundamental representation, two for those in the adjoint.

(tab)cd = −

1

N

 b  a 

 c  d 

−

1

N

     quark:
p0a = p0 - Qa

        gluon:
p0ab = p0 - Qa + Qb
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Computing with ease in the semi-QGP

Perturbation theory is as usual, except there is an imaginary (color) chemical 
potential, which shifts the energy, p0. Propagators in imaginary time, τ:
energy p0 = 2 π n T, n = 0, ± 1, ± 2...

∆Q(τ, E) = T
+∞�

n=−∞

e−ip0τ

(p0 + Q)2 + E2
=

�

s=±

s

2E
(1 + n(sE − iQ))) e−sEτ

Birdtrack three gluon vertex ↑

−

+ + )(

+

−

2

N

+
4

N2 ← Birdtrack symmetric structure constant
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Dilepton production in the semi-QGP, 1
Compute the usual diagram at lowest order,
just adding Q’s to the propagators:

 ←k0 - Qa

 p0 - k0 + Qa →

 p0 →
Loop momenta = k; E1 = Ek, E2 = Ek-p .
Result is ~ ∫ d3k RQ:

RQ = n−(E1 − iQ)n−(E2 + iQ)

Standard identity:

Doing Boltzmann expansion,

RQ = n+(E1 + E2)



1−
∞�

j=1

(−1)j+1

Nc

�
e−jE1 trLj + e−jE2 tr (L†)j

�




Still have to integrate over Q’s.  Easy to evaluate for arbitrary Q-distribution.

RQ = n+(E1 + E2) (1− n−(E1 − iQ)− n−(E2 + iQ))
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Dilepton production in the semi-QGP, 2

Complete QGP: Q = 0, usual product
of Fermi-Dirac distribution functions RQ=0 = n−(E1) n−(E2)

Confined phase: flat Q-distribution.
At Nc=∞, tr Lj = 0  for j ≥ 1, so Rconfined = n+(E1 + E2)

At low momenta, E1+E2 << T, Rconfined ~ (E1+E2)/T, while RQ=0 ~ 1
Bose enhancement in the confined phase, but not in the complete QGP.  
Confined phase gives more (very soft) dileptons than the QGP!

 ←k0

 p0 - k0 →Contrast to FWpPNJL model
(Fukushima-Weise-pisarski-Polyakov)NJL:

Each quark line ~ l = tr L/Nc, 
so R suppressed,  ~ l2 as l → 0.

Not like a matrix model, where there is enhancement
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 Energy loss in the semi-QGP
Damping rate for a fast or heavy quark: add Q’s to the propagators.
Need Hard Thermal Loops (HTLs) in background Q-field:
Blue: hard momenta, p ~ T.  Red:soft momenta, p ~ g T.  Blob = HTL resummed

Again, result is a function of the Q’s, F(Q)
times the perturbative result: γ = c g2 Nc log(1/g)F(Q)

By definition, in the complete QGP, Q = 0, F(0) = 1.

Near Tc, where l → 0, F(Q) ~ l.  
Energy loss ~ damping rate, so it is suppressed linearly near Tc.
Suppression of energy loss very different from dilepton production!

Plus: uniform suppression of color charge, ~ < loop >: RAA for heavy quarks?
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 Shear viscosity in the semi-QGP, 1
Shear viscosity, η, in the complete QGP:Arnold, Moore & Yaffe, hep-ph/0302165
In the semi-QGP: Boltzmann equation in a background field, Q ≠ 0.

η =

S2

C
S = source term , C = collision term.  

Start first with pure glue, for small values of the Polyakov loop, l = tr L/Nc:

Cglue ∼ �2Sglue ∼ �2

ηglue ∼
S2

glue

Cglue
∼ (�2)2

�2
∼ �2
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 Shear viscosity in the semi-QGP, 2
With Nf flavors of dynamical quarks, taking Nf ~ Nc →∞:

Sqk ∼ � Cqk ∼ 1

ηqk ∼
S2

qk

Cqk
∼ �2

1
∼ �2

Thus η ~ l2 as l → 0 in all cases.
Away from small l, quark and gluon scattering enter, terms mix.

Not like ordinary kinetic theory: η small not because of large coupling, but
because density of fields vanishes.  Special to deconfining transition.
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 Shear viscosity in the semi-QGP, 3
R(l) = ratio of shear viscosity in 
semi-QGP/pert.-QGP for the same value of g
c1, c2 #’s from Arnold, Moore, & Yaffe
As l → 0, R(l) ~ l2.  e.g., R ~ 0.3 for l ~ 0.3

! →

R(!) ↑

∼ !
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N

η =
c1 T 3

g4 log(c2/g)
R(�)
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 Shear viscosity in the semi-QGP, 4
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.

0.8
←

1
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η
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Renormalized loops
Polyakov ’80, Dotsenko & Vergeles ’81 +...
Dumitru, Hatta, Lenaghan, Originos, & RDP hep-ph/0311223
Gupta, Hubner & Kaczmarek 0711.2251 = GHK

Bare loop UV divergent.  At one loop  =>
In 3+1 dim.’s, linear divergence with lattice spacing “a”:
(R = representation, Casimir CR)

Renormalized loop: 
Nt = 1/aT = # time steps:

Can choose

Also choose zero point energy E0 = 0: RDP & YK 0907.4609

〈!〉 → 1 , T → ∞

〈!bare
R 〉 = exp

(

−# CR g2(1 + . . .)
1

aT

)

〈!renR 〉

〈!bare
R 〉 = ZR(g2)Nt 〈!renR 〉
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Sign of the integral is negative; like subtracting 1/k2 propagator.

Gava & Jengo ’81:
Compute perturbatively, 
fold Debye mass, mD , into propagator for A0:

〈!renR 〉 − 1 ∼ (+)
CR

N

(g2 N)3/2

8π
√

3

At high T, ren’d loops approach 1 from above

〈!renR 〉 − 1 ∼ (−)
CR g2

T

∫

d3k
1

k2 + m2
D

∼ (−)
CR g2

T
(−)

√

m2
D
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Zero point energy & renormalized loops
RDP & YK 0907.4609: renormalization valid for arbitrary Wilson loops:

W = tr P e
ig

∮
Aµdxµ

; Wbare = Zdiv Wren

Two ambiguities:

Zdiv = eE0L
Z0 Z(g2

. . .)L/a ; Wren → e−E0L
Z

−1

0 Wren

Overall scale trivial: Z0  = 1 by requiring <loop> → 1 as T →∞.

E0 = ground state energy for potential from Wilson loop:  E0 = # √σ.  # ?
Can define E0 = 0 order by order in perturbation theory with any regulator.
     E0 = 0 also in string model: Nambu-Goto plus extrinsic curvature terms.
     Ambiguity present also for calc.’s on small sphere
Lattice provides non-perturbative way to define E0 = 0.  

However, E0 = 0 only for straight loops, and not for “smeared” loops.
Renormalization of smeared loops: S. Capitani and O. Kaczmarek, in progress.
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Lattice: renormalized loop, c/o quarks
GHK:  Lattice SU(3), no quarks.  Two ways of getting ren’d loop agree.
<triplet loop> ~ 1/2 at Tc+.  N=3 close to Gross-Witten point?
semi-QGP: from (exactly) Tc+ to 2 - 4 Tc (?).   <loop> ~ constant above 4 Tc.
<adjoint loop> ~ 0.01 just below Tc . Only natural in matrix model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  4  6  8  10  12

L3
r

T/Tc

-direct renormalization
QQ renormalization

Ren’d
triplet 
loop ↑

1.0→

←    Confined    →←Semi→←   Complete QGP  →   

  ~ 1/2→

←Tc

←4 Tc

T/Tc→
12Tc↓
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 Lattice: renormalized loop, with quarks
Cheng et al, 0710.0354: ~ QCD, 2+1 flavors.  Tc ~ 190 MeV, crossover.
<loop>: nonzero from ~ 0.8 Tc; ~ 0.3 at Tc; ~ 1.0 at 2 Tc.
Semi-QGP from ~ 0.8 Tc (below Tc) to ~ 2-3 Tc (?). <loop> small at Tc .
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N =4
6
8

T→

←1.0

← 0.3

Tc↑

Ren.’d
triplet 
loop ↑

2 Tc↑

←    Confined     →←           Semi-QGP             →←Complete QGP

.8 Tc↑
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 Effective potential for the semi-QGP, 1
At one loop order, there is a potential for A0cl = Q/g:
Gross, Yaffe, & RDP, ’81; N. Weiss, ‘81

Necessary: in the pure glue theory, lifts the degeneracy in q.  
This potential enters the computation of the tunneling between Z(Nc) vacua,
= Z(Nc) interface tension.

Meisinger, Miller, & Ogilvie (MMO), hep-ph/0108009:
add a non-perturbative potential, ~ T2

Terms ~ T2  “Fuzzy Bag”:  RDP, hep-ph/0612191

Vpert. = # T 4 q2(1− q)2 , Q = 2πTq

Vnon−pert. = # T 2 q(1− q)

Must have terms ~ q as q → 0: else have a phase transition 
(either 1st or 2nd order), in going from the complete QGP, to the semi- QGP.
Lattice finds only one transition, at Tc, and not a second transition above Tc.
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 Effective potential for the semi-QGP, 2
MMO fit the pressure 
with reasonable 
accuracy:

But the renormalized Polyakov loop is nothing like the lattice:
it is near one by ~ 1.5 Tc!
Dumitru, RDP, & Zschiesche, ’05, unpublished: no effective potential fits 
both the pressure and the renormalized loop.
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Z(N) interfaces = ‘t Hooft loop 
Z(N) interface: Z(N) “twist” in z-direction. Atr = transverse area.

tN = diag(1N-1, -N+1).  A0 ~ “coordinate” q(z).
Leff = classical + 1 loop potential, for constant A0

〈L〉 = 1

〈L〉 = e
2πi/N

1

z

Bhattacharya, Gocksch, Korthals-Altes & RDP, hep-ph/9205231
Interface = ‘t Hooft loop: Korthals-Altes, Kovner & Stephanov, hep-ph/9909516
Corrections ~ g3: Giovannangeli & Korthals-Altes hep-ph/0412322
                    ~ g4:  Korthals-Altes, Schroder, & Vuorinen, in progress

Leff =
4π2(N − 1)T 3

√

3g2N
Atr

∫

dz

(

(

dq

dz

)2

+ q2(1 − q)2
)

Acl
0 =

2πT

gN
q(z) tN
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 Interface tension for the semi-QGP
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In pure glue SU(Nc) theory, global Z(Nc) symmetry implies Nc degenerate vacua
Tunneling between degenerate Nc vacua is interface tension (aka ‘t Hooft loop)
Semi-classical computation of interface tension works well above ~ 10 GeV,
but not below: SU(2) lattice, de Forcrand & Noth hep-lat/0506005
DGHKP, 1010....: With “fuzzy bag” term of MMO, works well right down to Tc!

25



 Two types of gluon masses in the semi-QGP
DGHKP, 1010....: two point function of gluons.  In coordinate space,
(energy p0 = 2 π n T, n = 0, ± 1, ± 2...)

�Aab
0 (�x) Aba

0 (0)� ∼
�

d3p

(2π)3
ei�p·�x

+∞�

n=−∞

e−ip0τ

(�p )2 + (p0 + Qa −Qb)2 + m2
D(Q)

10-3

10-2

10-1

100

101

 0  2  4  6  8  10  12  14  16

F 1
(R

)/T

aR

=4.0760, T/Tc=1.005
fit

x→
↑log<A(x)A(0)>

Off-diagonal color fields heavy:       
        ~ |p0 + Qa - Qb| ~ 2 π T
Diagonal color fields light:
        ~ Debye mass, mD(Q) ~ g T

Unique prediction in semi-QGP:
two types of gluon masses

O. Kaczmarek, unpublished:
evidence from lattice SU(3):
two slopes in log<A(x)A(0)> 
Only below ~ 1.5 Tc, not above
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 Conclusions

RHIC: (mainly) in the semi-QGP?

LHC: deep in the complete QGP?

Shear viscosity increases going from the semi- QGP,
to the complete QGP.

Today: the width of the semi-QGP is narrow, from ~ Tc to ~ 1.5 Tc, 
and not broad, ~ Tc to ~ 4 Tc.

John Harris: “Expect the Unexpected” 
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