
Punchline: 

Effective theory for deconfinement, near Tc.

There’s always an effective theory.

Based upon results from the lattice

Real competition for AdS/CFT
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Matrix model for deconfinement
SU(N) gauge theories, without quarks, at a temperature T 
    Lattice: in some ways, N = 3 is close to N = ∞.  

Simple matrix model, valid in large N expansion
   With 2 parameters, good fit to one function of T, pressure
   Good agreement with second function of T, the ‘t Hooft loop (interface tension)
   Disagrees with third function of T, (renormalized) Polyakov loop - ?

Most unexpected: transition region very narrow, < 1.2 Tc, ~ independent of N
          Adjoint Higgs phase, with split masses, in this narrow region

G(2) gauge theories: “deconfinement” without a center
Need to introduce terms to generate maximal eigenvalue repulsion

Generalization of Meisinger, Miller, Ogilvie (MMO), arXiv:hep-ph/0108009
Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, 1011.3820 + 1205....
Also: Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940.
RDP: ph/0608242 + ...

2Friday, March 30, 2012



What the lattice tells us

Apparently: for SU(N), weak dependence on N

Lucini, Rago, & Rinaldi, 1202.6684:  Tc = transition temperature, σ = string tension.

This ratio changes little, by 8%, from N=3, ~ 0.64 to N =  ∞, ~ 0.60.

Picture more complicated: weak N dependence for some quantities, but not all.

Still, use large N approximation as basic justification: no small masses

Tc√
σ

= .5949(17) +
0.458(18)

N2
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Lattice, SU(N): how wide is the transition?
SU(N) gauge theories without quarks, temperature T ≠ 0
Scaled by ideal gas, energy “e” and pressure “p” approximately independent of N.  
e and p ≈ 0 below Tc: ~ N2 - 1 gluons above Tc, vs ~ 1 hadrons below.
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SU(3)
SU(4)
SU(6)

Boyd, Engels, Karsch, 
Laermann, Legeland, 
Luetgemeier, Petersson, 
lat/9602007
Datta & Gupta, 1006.0938
                         
Width of “semi”-QGP?

pressure: wide ~ 4 Tc

energy: narrow, ~ 1.5 Tc

← p/pideal

e/eideal ↓

↑ Tc 4 Tc ↑T→

N = 3, 4, 6
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Lattice: peak in conformal anomaly
For SU(N), “peak” in e-3p/T4  just above Tc.  Approximately uniform in N.

Not near Tc: transition 2nd order for N = 2, 1st order for all N ≥ 3
         N=3: weakly 1st order.  N =  ∞: strongly 1st order (latent heat ~ N2)
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Datta & Gupta, 1006.0938: latent heat ~ e(Tc+).  

long tail?

↑ Tc 4 Tc ↑

1
N2 − 1

e− 3p

T 4
↑

N = 3, 4, 6

e(T+
c )

(N2 − 1)T 4
c

= 0.388− 1.61

N2

Even scaled by N2 -1, e(Tc) 
increases by a factor of two
from  N = 3, ~ 0.21 
to      N = ∞, ~ 0.39
Near Tc, quantities can depend 
strongly upon N
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Lattice: tail in the conformal anomaly
Scaling: (e-3p)/T2 approximately constant above 1.2 Tc: MMO ’01; RDP, ph/0608242

Only true to ~ 4Tc ; eventually, (e-3p)/T4 ~ g4(T) 

Datta & Gupta, 1006.0938
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↑ Tc 4 Tc ↑T→

1
N2 − 1

e− 3p

T 2 T 2
c

↑

N = 3, 4, 6
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Lattice: terms ~ T2 in pressure

Lattice: WHOT. Change # time steps at fixed lattice scale.  Higher precision, ± 1%

1.0 1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

2 Tc↑↑ Tc

1
8

e− 3p

T 2 T 2
c

↑

↑ 1.2 Tc

WHOT: Umeda, Ejiri, Aoki, 
Hatsuda, Kanaya, Maezawa, 
Ohno, 0809.2842

T→

                      Punchline: T > 1.2 Tc: constant => 
                                     p(T) ~ # T2 

T < 1.2Tc: transition region.  Narrow

T : 1.2 → 2Tc : p(T ) ≈ #T 2(T 2 − c T 2
c ) , c = 1.00± .01

“Fuzzy bag”
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Lattice, 2+1 dim.’s: again, terms ~ T2 in pressure
Caselle, Castagnini, Feo, Gliozzi, Gürsoy, Panero, & Schäfer, 1111.0580. 
SU(N), N = 2, 3, 4, 5: again, non-perturbative terms ~ T2 and not ~ T.
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2
-dependence in the trace of the energy-momentum tensor

N
t
 = 6 lattices

1
N2 − 1

e− 2p

T 3
↑

Tc/T→

↑ 10 Tc ↑ 1.1 Tc↑ 2 Tc

p(T ) ≈ # T 2(T − c Tc) , c ≈ 1.
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Not strong coupling, even at Tc

e− 3p

T 2 T 2
c

↑

QCD coupling runs like α(2πT), intermediate at Tc, α(2πTc) ~ 0.3
                Braaten & Nieto, hep-ph/9501375, Laine & Schröder, hep-ph/0503061 & 0603048
HTL resummed perturbation theory, NNLO, good to ~ 8 Tc :

Andersen, Leganger, Strickland, Su, 1105.0514

Assume: intermediate 
coupling near Tc

versus AdS/CFT
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Polyakov Loops and Z(N)

T→ 

Tc ↑ 

<l>↑

L = Wilson line.  Under global Z(N) rotations:
(Z(N) symmetry lost with dynamical quarks)

Wilson line gauge variant.  Trace is invariant:
(N.B.: eigenvalues of L are gauge invariant)

〈 loop 〉 measures ionization of color:
partial ionization when 0 < 〈 loop 〉 < 1 :
“semi”-QGP

Svetitsky and Yaffe ’80: 
SU(3) 1st order because Z(3) allows cubic terms:

Does not apply for N > 3.  
So why is deconfining transition 1st order for all N ≥ 3?

Leff ∼ !3 + (!∗)3

! =
1
N

trL

L = P eig
∫ 1/T
0 A0 dτ → e2πi/N L
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Lattice: Polyakov Loop, no Quarks
N=3: Gupta, Hubner, Kaczmarek, 0711.2251.  
N ≥ 4: Mykkanen, M. Panero, and K. Rummukainen, 1110.3146
Suggests wide transition region, like pressure, to ~ 4 Tc.
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direct renormalization

QQ renormalization

T → 

<loop>↑

↑ ~ 4 Tc 

←1.0

← ~ 0.4

↑ Tc↑T=0

←  Confined  →← SemiQGP→ ←  “Complete” QGP  →   N = 3
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Lattice: Polyakov Loop with Quarks, “Tc”

Quarks ~ background Z(3) field.  Lattice: Bazavov et al, 0903.4379.
3 quark flavors: weak Z(3) field, does not wash out Z(3) symmetry of SU(3) glue
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Tr0 
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p4, N!=6

8
asqtad, N!=6

8

↑“Tc”.8“Tc”↑ 2 “Tc”↑

← 0.2

←    Hadronic       →←            “Semi”-QGP               →←Complete QGP

<loop> ↑

↑T=0

←1.0

T → 
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Interface tensions: order-order & order-disorder
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T >> Tc T ~ Tc T < Tc

Im l↑

Re l→

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  
Distribution of loop shows Z(3) symmetry:

zInterface tension: box long in z.  
Each end: distinct but degenerate vacua.
Interface forms, action ~ interface tension:

T > Tc: order-order interface = ‘t Hooft loop:
             measures response to magnetic charge
               Korthals-Altes, Kovner, & Stephanov, hep-ph/9909516

Also: if trans. 1st order, order-disorder interface at Tc .

Z ∼ e−σintVtr
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Lattice: ‘t Hooft loops σ
Lattice: de Forcrand & Noth, lat/0510081. σ ~ universal with N
Semi-classical σ : Giovanengelli & Korthals-Altes ph/0102022; /0212298; /0412322: GKA ‘04
Above 4 Tc, semi-class σ ~ lattice.  Below 4 Tc, lattice σ <<  semi-classical σ.
         Even so, when N > 3, all tensions satisfy “Casimir scaling” at T > 1.2 Tc.
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↑
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Nf=0
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Lattice: A0 mass as T → Tc - up or down?

Kaczmarek, Karsch, Laermann, Lutgemeier lat/9908010

μ/T goes down as T → Tc

〈trL†(x) trL(0)〉 ∼ e−µx/xd

mD/T goes up as T → Tc
Cucchieri, Karsch, Petreczky lat/0103009, 
Kaczmarek, Zantow lat/0503017

Which way do masses go as T → Tc?
Both are constant above ~ 1.5 Tc.

T→

T→

Gauge invariant: 2 pt function of loops:

Gauge dependent: singlet potential

〈tr
(
L†(x)L(0)

)
〉 ∼ e−mDx/x

↑ Tc ↑ 2Tc

mD

T
↑

µ

T
↑

↑ 2Tc↑ Tc
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Other models

Comparable to our model with one free parameter

Fit only the pressure, not interface tensions.

Masses as T → Tc+: 
some go up (massive gluons), some go down (Polyakov loops)          
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Models for the “s”QGP, Tc to 4 Tc

1. Massive gluons: Peshier, Kampfer, Pavlenko, Soff ’96...Castorina, Miller, Satz 1101.1255
                                                                             Castorina, Greco, Jaccarino, Zappala 1105.5902 

p(T ) = #T 4 −m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T) with 3 parameters.
Gluons very massive near Tc.

2. Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ∼ m2!∗! + T log f(!∗!)Effective potential of Polyakov loops.
Potential has 5 parameters...
With quarks, at T ≠ 0, can go from μ = 0 to μ ≠ 0 m2 = T 4

3∑

i=0

ai(Tc/T )i

3. AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N, with 2 parameters

V (φ) ∼ cosh(γφ) + b φ2

4. Monopoles: Liao & Shuryak, 0804.0255. 
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Matrix model: two colors

Simple approximation

Two colors: transition 2nd order, vs 1st for N ≥ 3
                                                      

Using large N expansion at N = 2
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Matrix model: SU(2)
Simple approximation: constant A0 ~ σ3 , nonperturbative, ~ 1/g:

Point halfway in between: q = ½ , l = 0 .
Confined vacuum, Lc,  

Classically, A0cl has zero action: no potential for q.

Single dynamical field, q 
Loop l real.  Z(2) degenerate vacua q = 0 and 1:

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

! = cos(πq)

Lc =
(

i 0
0 −i

)

L(q) =
(

eiπq 0
0 e−iπq

)
σ3 =

(
1 0
0 −1

)
Acl

0 =
πT

g
q σ3
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Potential for q, interface tension
Computing to one loop order about A0cl gives a potential for q: Gross, RDP, Yaffe, ‘81

Use Vpert(q) to compute σ: Bhattacharya, Gocksch, Korthals-Altes, RDP, ph/9205231.

⇒ σ =
4π2

3
√

6
T 2

√
g2

Balancing Scl ~ 1/g2 and Vpert ~ 1 gives σ ~ 1/√g2 (not 1/g2). 

Width interface ~ 1/g, justifies expansion about constant A0cl.  GKA ‘04: σ ~ ... + g2

Vtot(q) =
2π2T 2

g2

(
dq

dz

)2

+ Vpert(q)

q →

Vpert(q) ↑

10x x

x Vpert(q) =
4π2

3
T 4 q2(1− q)2
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Symmetries of the q’s

Wilson line L not gauge invariant, L → Ω† L Ω.  
Its eigenvalues, e± i π q , are. 

Ordering of L’s eigenvalues irrelevant.

Symmetries: q → q + 2 : q angular variable. Valid with quarks.

Pure glue: also, q → q + 1, Z(2) transf., L → - L 

For pure glue, can restrict q: 0 → 1.  

Then Z(2) transf. q → 1 - q: 
Z(2) transf., plus exchange of eigenvalues

Any potential of q must be invariant under q → 1- q

L(q) =
(

eiπq 0
0 e−iπq

)

L(1− q) = −
(

e−iπq 0
0 eiπq

)
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Potentials for the q’s

Add non-perturbative terms, by hand, to generate <q> ≠ 0 :
By hand?  Vnon(q) from: monopoles, vortices...

T < Tc:  〈q〉 = ½ →
1q →0x x

xVeff (q) ↑

q → 1

T >> Tc:  〈q〉 = 0,1 →

0x x

xVeff (q) ↑

Veff (q) = Vpert(q) + Vnon(q)
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Three possible “phases” 
Two phases are familiar:

     〈q〉 = 0, 1:  〈l〉 = ± 1: “Complete” QGP: usual perturbation theory. T >> Tc .

     〈q〉 = 1/2: 〈l〉 = 0 : confined phase.  T < Tc

There is also a third phase, “partially” deconfined: adjoint Higgs phase

     0 < 〈q〉 < 1/2: 〈l〉 < 1: “semi”-QGP.  For some # Tc > T > Tc  What is this #?

So two phase transitions are possible: from complete QGP to semi QGP,
then from semi-QGP to confined phase.

Lattice: one transition, to confined phase, at Tc.  No other transition above Tc.
      Still, there is an intermediate phase, the semi-QGP

Strongly constrains possible non-perturbative terms, Vnon(q).
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Vnon(q) ∼ q(1− q)

Getting three “phases”, one transition

Simple guess: Vnon ~ loop2,

1s order transition directly from complete QGP to confined phase: no semi-QGP.

Generic if Vnon(q) ~ q2 at q << 1.  Easy to avoid, if  Vnon(q) ~ q for small q.  
Then 〈q〉  ≠  0 at all T: no complete QGP; always adjoint Higgs phase above Tc.

Imposing the symmetry of q ↔ 1 - q, Vnon(q) must include

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

x xx

Veff ↑

q →

Veff ∼
a

π2
("2 − 1) + q2(1− q)2

∼ q2(1− a)− 2q3 + . . .
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Cartoons of deconfinement
Consider:

0.2 0.4 0.6 0.8 1.0

!0.015
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⇓ a = ¼: semi QGP

xx

Veff ↑

⇓ a = 0: complete QGP
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a = ½:                       Tc=>
Stable vacuum at q = ½
Transition second order

x

q →

Veff = q2(1− q)2 − a q(1− q) , a ∼ T 2
c /T 2
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Meisinger, Miller, Ogilvie (MMO), ph/0108009:
take Vnon ~ T2

0-parameter matrix model, N = 2

Two conditions: transition occurs at Tc, pressure(Tc) = 0
Fixes c1 and c3, no free parameters.  Not close to lattice data (from ’89!)

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

e− 3p

3 T 4
↑

 ⇐ 0-parameter model

 ⇐ Lattice

Vnon(q) =
4π2

3
T 2 T 2

c

(
− c1

5
q(1− q) +

c3

15

)

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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1-parameter matrix model, N = 2
Dumitru, Guo, Hidaka, Korthals-Altes, RDP ‘10:  to usual perturbative potential,

Add - by hand - a non-pert. potential Vnon ~ T2 Tc2.  Also add a term like Vpert:

Vpert(q) =
4π2

3
T 4

(
− 1

20
+ q2(1− q)2

)

Now just like any other mean field theory.  〈q〉  given by minimum of Veff:

〈q〉 depends nontrivially on temperature.

Pressure value of potential at minimum:

Vnon(q) =
4π2

3
T 2 T 2

c

(
− c1

5
q(1− q)− c2 q2(1− q)2 +

c3

15

)

Veff (q) = Vpert(q) + Vnon(q)

p(T ) = −Veff (〈q〉)

d

dq
Veff (q)

∣∣∣∣
q=〈q〉

= 0
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Lattice vs matrix models, N = 2
Choose c2 to fit e-3p/T4: optimal choice

Reasonable fit to e-3p/T4; also to p/T4, e/T4.

N.B.: c2 ~ 1.  At Tc, terms ~ q2(1-q)2 almost cancel.  

↑ Tc 3 Tc ↑T→

e− 3p

3 T 4
↑

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4
 ⇐ Lattice  

 ⇐ 0-parameter 

 ⇐ 1-parameter 

c1 = 0.23 , c2 = .91 , c3 = 1.11

Lattice: Engels, Fingberg, 
Redlich, Satz, Weber ‘89
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Lattice vs 1-parameter model, N = 2
c1 = 0.23 , c2 = .91 , c3 = 1.11

-0.5

 0
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 1
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 1  1.5  2  2.5  3
T / TC

p/T4

Latt. p/T4
e/3T4

Latt. e/3T4
!/T4

Latt. !/T4

↑ Tc 3Tc ↑T→

 ⇐ e-3p/T4, lattice

 ⇐ e-3p/T4, model

 ⇑ p/T4, lattice

 ⇓ e/T4, model  ⇓ e/T4, lattice

 ⇑ p/T4, model
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Width of transition region, 0- vs 1-parameter
1-parameter model: get sharper e-3p/T4 because 〈q〉 -> 0 much quicker above Tc.
Physically: sharp e-3p/T4 implies region where 〈q〉 is significant is narrow

N.B.: 〈q〉 ≠ 0 at all T, but numerically, negligible above ~ 1.2 Tc; p ~ 〈q〉2.
Above ~1.2 Tc, the T2 term in the pressure is due entirely to the constant term, c3!

1.2 1.4 1.6 1.8 2.0

0.1

0.2

0.3

0.4

0.5

 ⇐ 0-parameter

 ⇓ 1-parameter

〈q〉 ↑

↑ Tc 2 Tc ↑T→
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Polyakov loop: 1-parameter matrix model ≠ lattice
Lattice: renormalized Polyakov loop.  0-parameter model: close to lattice
1-parameter model: sharp disagreement. 〈l〉 rises to ~ 1 much faster - ?
Sharp rise also found using Functional Renormalization Group (FRG):
                Braun, Gies, Pawlowski, 0708.2413; Marhauser, Pawlowski, 0812.1144

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 ⇐ lattice

 ⇐ 0-parameter

 ⇓ 1-parameter

〈!〉 ↑

↑ Tc T→ 2 Tc ↑

Lattice:
Cardoso, Cardoso,
Bicudo, 1104.5432

Can reconcile by (arbitrary) 
shift in zero point energy

〈!〉 → e−E0/T 〈!〉
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Interface tension, N = 2
σ vanishes as T→Tc , σ ~ (t-1)2ν .
Ising 2ν ~ 1.26; Lattice: ~ 1.32.
Matrix model: ~ 1.5: c2 important.

Semi-class.: GKA ’04.  Include corr.’s ~ g2 in matrix σ(T) (ok when T > 1.2 Tc)
N.B.: width of interface diverges as T→Tc, ~ √(t2 - c2)/(t2-1).

σ(T ) =
4π2T 2

3
√

6g2

(t2 − 1)3/2

t (t2 − c2)
, t =

T

Tc

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

!
/T

2

T / TC

Latt. data SU(2)
model, SU(2)

GKA

↑ Tc 2.8 Tc ↑T→

 ⇐ matrix model 
Semi-classical⇒

 ⇐ lattice

σ

T 2
↑

 ⇐ lattice

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
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Adjoint Higgs phase, N = 2
 A0cl ~ q σ3, so 〈q〉 ≠ 0 generates an (adjoint) Higgs phase:
RDP, ph/0608242; Unsal & Yaffe, 0803.0344, Simic & Unsal, 1010.5515

In background field, A = A0cl + Aqu : D0cl Aqu = ∂0 Aqu + i g [A0cl , Aqu]
Fluctuations ~ σ3 not Higgsed, ~ σ1,2 Higgsed, get mass ~ 2 π T 〈q〉
Hence when 〈q〉 ≠ 0, for T < 1.2 Tc, splitting of masses:

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

↑ Tc

T→
1.5 Tc ↑

 ⇐ diagonal A0 mode

⇐ off-diagonal A0 modesmeff

mpert
↑

At Tc: mdiag = 0,
moff ~ 2 mpert.

1 →

↑ 1.2 Tc

 mpert = √2/3 g T:

        m/mpert ~ .56
at 1.5 Tc, from Vnon.
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Why the deconfining transition
is of first order for all N ≥ 3
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General potential for any SU(N)

For SU(N), Σj=1...N qj = 0.  Hence N-1 independent qj’s, = # diagonal generators.

At 1-loop order, the perturbative potential for the qj’s is

As before, assume a non-perturbative potential ~ T2 Tc2:

Vnon(q) =
2π2

3
T 2T 2

c



− c1

5

∑

i,j

qij(1− qij)− c2

∑

i,j

q2
ij(1− qij)2 +

4
15

c3





Aij
0 =

2πT

g
qi δij Lij = e2πi qj δij

Ansatz: constant, diagonal matrix
              i, j = 1...N

Vpert(q) = π2 T 4



−N2 − 1

45
+

2π2

3

∑

i,j

q2ij(1− qij)
2



 , qij = |qi − qj |
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Path to Z(3), three colors

SU(3): two diagonal λ’s, so two q’s:

λ3 =




1 0 0
0 −1 0
0 0 0



 ; λ8 =




1 0 0
0 1 0
0 0 −2





Z(3) paths: move along  λ8, not λ3: q8 ≠ 0, q3 = 0.  

L = 1 L = e2πi/3 1
q8 = 1q8 = 0 q8 = 3/8

L = e2πiq8λ8/3

A0 =
2πT

3 g
(q3 λ3 + q8 λ8)

36Friday, March 30, 2012



Path to confinement, three colors

L = e2πiq3λ3/3Now move along λ3:

In particular, consider q3 = 1: 
Elements of e2π i/3 Lc same as those of Lc.  
Hence tr Lc = tr Lc2 = 0: Lc confining vacuum

Path to confinement: along  λ3, not λ8, q3 ≠ 0, q8 = 0.  

Lc =




e2πi/3 0 0

0 e−2πi/3 0
0 0 1





q3 = 0 q3 = 3/8 q3 = 1
! = 0! ≈ .8! = 1
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Path to confinement, four colors
Ansatz: move to the confining vacuum along one direction,  qjc, with uniform
spacing of eigenvalues.  Close to the exact solution, determined numerically.

Perturbative vacuum: q = 0. 
Confining vacuum: q = 1.
Four colors:

qc
j =

(
2j −N − 1

2N

)
q , j = 1 . . . N

q = 0 q = 1/2
! = 1 ! ≈ .65 ! = 0

q = 1
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Why deconfinement is of first order for all N ≥ 3

No term linear in φ: confining vacuum center of Weyl chamber.
Cubic term in φ for all N ≥ 3.  Not special to particular ansatz.
Cubic terms, and so a first order transition, are ubiquitous.

Special to matrix model, with the qi’s elements of Lie algebra.

Svetitsky and Yaffe ’80: Veff(loop) ⇒ 1st order only for N=3; loop in Lie group

Also 1st order for N  ≥ 3 with FRG: Braun, Eichhorn, Gies, Pawlowski, 1007.2619.

Define φ = 1 - q,
Confining point φ = 0

m2
φ = 1 +

6
N2

− c1

t2 − c2

Vtot =
π2(N2 − 1)

45
T 4

c t2 (t2 − 1) Ṽ (φ, t) , t =
T

Tc

Ṽ (φ, t) = −m2
φ φ2−2

(
N2 − 4

N2

)
φ3 +

(
2− 3

N2

)
φ4
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Cubic term for four colors
Construct Veff either from q’s, or equivalently, loops: tr L, tr L2, tr L3....
N = 4: |tr L|2 and |tr L3|2  not symmetric about q = 1, so cubic terms, ~ (q - 1)3.
           (|tr L2|2 symmetric, residual Z(2) symmetry)
Cubic terms special to moving along qc in a matrix model.  Not true in loop model

0.40 0.45 0.50 0.55 0.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

⇐ |tr L3|2

⇑ q = 1

qc ⇒

 ⇑ .8  ⇑ 1.2
40Friday, March 30, 2012



0.400.450.500.550.60
0.00

0.02

0.04

0.06

0.08

0.10

x
⇐ |tr L|2

|tr L3|2 ⇒

⇑ q =1
qc ⇒

 ⇑ .8 ⇑ 1.2

Cubic term for four colors

Asymmetric in reflection about q = 1

         ⇔
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1

O
Y

(1, 1, −2)

c

(1, −1, 0)
O

Y

2
Y

c

Y
3

1
Y

S

T 

T

1  (2, −1, −1)
3

−Y2

1

(a)                                                                                                 (b)

2
q

q
3

Y

q

X’

S

Tr L =02

Tr L=Tr L   =  0
3

Yc

r(4)
c

x

P

QW

X

Z

Tr L   =0
3V

O

x

q
1

q
2

Y2

2

2

1

1

U

R

R’

Weyl chambers and 1st order transitions

For N ≥ 3, the Weyl chamber is not symmetric 
about the confining vacuum, Yc :
This drives the deconfining transition first order.
Z(N) vacua: 

N = 3

N = 4

Yc

Yc

Plane in which tr L real:
one other dimension.
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Matrix model: N ≥ 3

One parameter model
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Lattice vs 0- and 1- parameter matrix models, N = 3
Results for N=3 similar to N=2.
0-parameter model way off.
Good fit e-3p/T4 for 1-parameter model, 

Again, c2 ~ 1, so at Tc, terms ~ q2(1-q)2 almost cancel.  

c1 = 0.32 , c2 = 0.83 , c3 = 1.13

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

↑ Tc 3 Tc ↑T→

 ⇐ 1-parameter 

 ⇐ 0-parameter 

 ⇐ Points: lattice  Lattice:
Bielefeld, lat/9602007
Datta & Gupta, 1006.0938

e− 3p

8 T 4
↑
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Polyakov loop: matrix models ≠ lattice

1.0 1.2 1.4 1.6 1.8 2.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Renormalized Polyakov loop from lattice does not agree with either matrix model
〈l〉 - 1 ~ 〈q〉2: By 1.2 Tc,  〈q〉 ~ .05, negligible.
Again, for T > 1.2 Tc, the T2 term in pressure due entirely to the constant term, c3!
Rapid rise of 〈l〉 as with FRG:  Braun, Gies, Pawlowski, 0708.2413

↑ Tc T→ 2 Tc ↑

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

〈!〉 ↑
Cannot reconcile by shift 

in zero point energy

〈!〉 → e−E0/T 〈!〉

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.
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Interface tension, N = 2 and 3
Order-order interface tension, σ, from matrix model close to lattice.
For T > 1.2 Tc, path along λ8; for T < 1.2 Tc, along both λ8 and λ3.

σ(Tc)/Tc2 nonzero but small, ~ .02.  Results for N =2 and N = 3 similar - ?

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

!
/T

2  / 
(N

-1
)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

Semi-classical⇒

 ⇐ matrix model,
             N = 2 

 ⇐ matrix model,
             N = 3 

↑ Tc 5 Tc ↑T→

Lattice:
de Forcrand, 
D’Elia, Pepe, 
lat/0007034 
de Forcrand, Noth
lat/0506005

lattice, N=3 ⇒
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Adjoint Higgs phase, N = 3

For SU(3), deconfinement along A0cl ~ q λ3.  Masses ~ [λ3, λi]: two off-diagonal.
Splitting of masses only for T < 1.2 Tc:
Measureable from singlet potential,  〈tr L†(x) L(0)〉, over all x.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1  1.2  1.4  1.6  1.8  2

m
 / 

gT

T / TC

a=b
|a-b|=1
|a-b|=2

T/Tc→

meff

mpert
↑

⇐ 4 off-diagonal, K’s

⇐ 2 off-diagonal, π’s

⇐ 2 diagonal modes

At Tc: mdiag 
small, but ≠ 0

mpert = g T,
m/mpert ~ .8 at 1.5 Tc, from Vnon.
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Matrix model, N = 3

To get the latent heat right, two parameter model.

Thermodynamics, interface tensions improve
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Latent heat, and a 2-parameter model
Latent heat, e(Tc)/Tc4:  1-parameter model too small:
1-para.: 0.33.  BPK: 1.40 ± .1; DG: 1.67 ± .1.  

2-parameter model, c3(T). Like MIT bag constant
WHOT: c3(∞) ~ 1.  Fit c3(1) to DG latent heat
Fits lattice for T < 1.2 Tc, overshoots above.

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

 ⇐ 1-parameter 

Latttice latent heat:
Beinlich, Peikert, 
Karsch (BPK)
lat/9608141
Datta, Gupta (DG)
1006.0938

c1 = .833 , c2 = .552

Bag const ~ (262 MeV)4

c2 not near 1, vs 1-para.

c3(1) = 1.33 , c3(∞) = .95

c3(T ) = c3(∞) +
c3(1)− c3(∞)

t2
, t =

T

Tc
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1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

1
8

e− 3p

T 2 T 2
c

↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

Anomaly times T2: 2-parameter model vs lattice

50Friday, March 30, 2012



G(2) and “deconfinement”

“Confinement” from eigenvalue repulsion
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G(2) group: confinement without a center

Holland, Minkowski, Pepe, & Wiese, lat/0302023...
Exceptional group G(2) obtained from SO(7).  
No center, so in principle, no “deconfinement”
Fund. = 7. Adjoint = 14.  Fund. screened by adj’s:   7 × 14 × 14 × 14 = 1 + ....

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

P

50
55
60
65
70
75
80

β = 9.7With no center, 〈loop7〉 can be 
nonzero at any T > 0.

But: lattice finds 
1st order transition, 
〈l7〉 ~ 0 for T < Tc, 
〈l7〉  ≠ 0 for T > Tc!  

There is a 
“deconfining” transition!

0↑

T<Tc T>Tc

←     Tc     →

↑0.4←<l7>→Welleghausen, Wipf, & Wozar 1102.1900.
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L7 = e2πiqG(2) , qG(2) = (0, q1, q2,−q1 − q2,−q1,−q2, q1 + q2))

Only two parameters, q1 and q2.  
Adjoint = 14 = 3 + 3* + 8. Perturbative potential:

qSU(7) = (0, q1, q2, q3,−q1,−q2,−q3)

By taking q3 = q1 + q2 and permuting the order of the eigenvalues.

Natural SU(3) embedding: fundamental 7 = 1 + 3 + 3* 

G(2): perturbative potential

Looks like a SU(3) gluon potential plus fundamental fields.
Hard to get confinement with G(2) potential: 3 and 3*’s give non-zero loop

qG(2) looks like a special case of SU(7):

V G2
2 = V2(q1) + V2(q2) + V2(q1 + q2)

+V2(q1 − q2) + V2(2q1 + q2) + V2(q1 + 2q2)

V2(q) = q2(1− q)2
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G(2): non-perturbative potentials

To one loop order, perturbative V:

Vnon(q) = T 2 T 2
c

(
−cG2

1 V G2
1 − cG2

2 V G2
2 − cSU7

1 V SU7
1 − cSU7

2 V SU7
2 − d !7

)

Without Z(N) symmetry, have many possible terms:

All V’s = V(q1,q2).  Generally, 

The VG2’s have the symmetry of the perturbative G(2) term.

The VSU7’s have the symmetry of the SU(7) theory, fixing q3 = q1 + q2.

Note a term ~ loop7 is allowed in the potential, unlike for SU(N).  No center!

Both VSU7 and  loop7 generate eigenvalue repulsion, and so small 〈loop7〉. 

Vpert(q) = π2 T 4

(
−14

45
+ V G2

2 (q1, q2)

)

Vn(q1, q2) =
∑

q1,q2

|q|n(1− |q|)n
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Predictions for Polyakov loop in G(2)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

! 7

T / TC

Vnpt
SU7, c2

SU7 = -2
Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Generically, easy to find 1st order transitions.  Most have 〈l7〉 nonzero below Tc.
To obtain zero (or small) 〈l7〉 below Tc, must have either VSU7 and/or l7 , 
and adjust terms to cancel pert. V2G2 at Tc.

←Vnon just G(2) terms
←”SU(7)” models

Vnon just loop7 ↓

←”SU(7)” models↑

←Vnon just loop7
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Predictions for interaction measure of G(2)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5  1  1.5  2  2.5  3  3.5  4

(e
-3

p)
 / 

T4

T / TC

Vnpt
SU7, c2

SU7 = -2
Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Vnon just G(2) terms→

←”SU(7)” models

↓ loop7 

Appear to have a potential with 5 - 2 = 3 parameters.  
Simply requiring 〈l7〉 small below Tc greatly restricts the possible parameters.
Yields dramatic differences in the behavior of (e-3p)/T4.

↓

56Friday, March 30, 2012



For SU(N), transition region narrow: for pressure, Tc to ~1.2 Tc!
       Special to pressure: for interface tensions, Tc to ~4 Tc...

Above 1.2 Tc, pressure dominated by constant term ~ T2 .

What does this come from?    Free energy of massless fields in 2 dimensions?
Strings?  But above Tc.

G(2) gauge group crucial test of model.  Lattice simulations in progress.

Need to include quarks.

Can then compute temperature dependence of: 

              shear viscosity, energy loss of light quarks, damping of quarkonia...

With quarks, is there a single “Tc”?

Summary
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