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Preface

Quantum field theory, which started with Dirac’s work shortly after the dis-
covery of quantum mechanics, has produced an impressive and important
array of results. Quantum electrodynamics, with its extremely accurate and
well-tested predictions, and the standard model of electroweak and chromo-
dynamic (nuclear) forces are examples of successful theories. Field theory has
also been applied to a variety of phenomena in condensed matter physics, in-
cluding superconductivity, superfluidity and the quantum Hall effect. The
concept of the renormalization group has given us a new perspective on field
theory in general and on critical phenomena in particular. At this stage, a
strong case can be made that quantum field theory is the mathematical and
intellectual framework for describing and understanding all physical phenom-
ena, except possibly for quantum gravity.

This also means that quantum field theory has by now evolved into such
a vast subject, with many subtopics and many ramifications, that it is im-
possible for any book to capture much of it within a reasonable length. While
there is a common core set of topics, every book on field theory is ultimately
illustrating facets of the subject which the author finds interesting and fas-
cinating. This book is no exception; it presents my view of certain topics in
field theory loosely knit together and it grew out of courses on field theory
and particle physics which I have taught at Columbia University and the City
College of the CUNY.

The first few chapters, up to Chapter 12, contain material which gener-
ally goes into any course on quantum field theory although there are a few
nuances of presentation which the reader may find to be different from other
books. This first part of the book can be used for a general course on field
theory, omitting, perhaps, the last three sections in Chapter 3, the last two
in Chapter 8 and sections 6 and 7 in Chapter 10. The remaining chapters
cover some of the more modern developments over the last three decades,
involving topological and geometrical features. The introduction given to the
mathematical basis of this part of the discussion is necessarily brief, and these
chapters should be accompanied by books on the relevant mathematical top-
ics as indicated in the bibliography. I have also concentrated on developments
pertinent to a better understanding of the standard model. There is no dis-
cussion of supersymmetry, supergravity, developments in field theory inspired
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by string theory, etc.. There is also no detailed discussion of the renormal-
ization group either. Each of these topics would require a book in its own
right to do justice to the topic. This book has generally followed the tenor
of my courses, referring the students to more detailed treatments for many
specific topics. Hence this is only a portal to so many more topics of detailed
and ongoing research. I have also mainly cited the references pertinent to the
discussion in the text, referring the reader to the many books which have
been cited to get a more comprehensive perspective on the literature and the
historical development of the subject.

I have had a number of helpers in preparing this book. I express my ap-
preciation to the many collaborators I have had in my research over the years;
they have all contributed, to varying extents, to my understanding of field
theory. First of all, I thank a number of students who have made sugges-
tions, particularly Yasuhiro Abe and Hailong Li, who read through certain
chapters. Among friends and collaborators, Rashmi Ray and George Thomp-
son read through many chapters and made suggestions and corrections, my
special thanks to them. Finally and most of all, I thank my wife and long
term collaborator in research, Dimitra Karabali, for help in preparing many
of these chapters.

New York V. Parameswaran Nair
May 2004 City College of the CUNY
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1 Results in Relativistic Quantum Mechanics

1.1 Conventions

Summation over repeated tensor indices is assumed. Greek letters u, v, etc.,
are used for spacetime indices taking values 0, 1,2, 3, while lowercase Roman
letters are used for spatial indices and take values 1,2, 3.

The Minkowski metric is denoted by 7,,,. It has components ngg = 1, 1;; =
—0;5, nos = 0. We also use the abbreviation 0, = 8%. The scalar product
of four-vectors A, and B, is A- B = AgBy — A; B;. Such products between
momenta and positions appear often in exponentials; we then write it simply
as px. It is understood that this is pgzg — p - @, where the boldface indicates
three-dimensional vectors.

The Levi-Civita symbol €% is antisymmetric under exchange of any two
indices, and €'?3 = 1. e#¥% is similarly defined with €*12% = 1.

Two spacetime points x, y are spacelike separated if (x — y)? < 0. This
means that the spatial separation is more than the distance which can be
traversed by light for the time-separation |2° — 1°|.

0 is also used to denote the boundary of a spatial or spacetime region;
i.e., OV and 90X are the boundaries of V' and X, respectively.

We will now give a resumé of results from relativistic quantum mechanics.
They are merely stated here, a proper derivation of these results can be
obtained from most books on relativistic quantum mechanics.

1.2 Spin-zero particle

We consider particles to be in a cubical box of volume V = L3, with the
limit V' — oo taken at the end of the calculation. The single particle wave
functions for a particle of momentum k can be taken as
e—ik;ﬂ
up(r) = ———= 1.1

where wy = vk -k + m?2. We choose periodic boundary conditions for the
spatial coordinates, i.e., up(x + L) = ug(z) for translation by L along any
spatial direction; therefore the values of k are given by
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27T’ni
ki =—— 1.2

(n1,mn2,n3) are integers. The wave functions ug(x) obey the orthonormality
relation

/v d®z [uf(i0gur) — (i0ouf)up] = Sk xr (1.3)
where 0y, ;- denotes the Kronecker §’s of the corresponding values of n;’s, i.e.,
Ok’ = Ony .t Oy nfyOng iy, (1.4)

In the limit of V' — oo, we have

2 3
g — % SO (k— k) (1.5)

3k
zk: — /VW (1.6)

The completeness condition for the momentum eigenstates |k) can be written

e Bk 1
k — (k] =1 1.7
[ g @ (17)
where kg = wy.
The wave functions uy are obviously solutions of the equation

Ouy, — V/-VZim? u, (1.8)

ot

The differential operator on the right-hand side is not a local operator; it has
to be understood in the sense of

\/—V2—|—m2f(x)£/ Ak R\ k2 + m2f(k) (1.9)

@ ©

where

3
@) = [ e k) (1.10)

One can define a local differential equation for the uy’s; it is the Klein-Gordon
equation

@ + mHu(z) =0 (1.11)

where [ is the d’Alembertian operator, 0 = 9,0 = (9y)? — V2.

One can take the Klein-Gordon equation as the basic defining equation
for the spinless particle and construct ug(z) as solutions to it. The inner
product is then determined by the requirement that it be preserved under
time-evolution according to the Klein-Gordon equation. The inner product
for functions u, v obeying the Klein-Gordon equation is thus given by
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(ulv) = /d3:17 [u*iDgv — i0pu™ V] (1.12)
The time-derivative of this gives
o (ulv) = /dS:v [(%u*iaov — i0gu™ Hyv + iu*agv — i(’“)gu*v]
= /dS:v [iu*(V? = m?)v —i(V? — m*)u*v]
= /dgac V- [u*iVu — iVu™ v

= j{ ds - [u*iVov — iVu* v]
ov
0 (1.13)

The last equality follows from the periodic boundary conditions. We see that
this inner product is preserved by time-evolution according to the Klein-
Gordon equation; this is the reason that (1.12) is the correct choice and (1.3)
is the correct form of the orthonormality condition to be used for this case.

1.3 Dirac equation

The basic variables are W,.(z), r = 1,2,3,4, which can be thought of as a
column vector. Each ¥, (z) is a complex function of space and time. The
Dirac equation is given by

(=)0 + mdyrs)¥s(z) =0 (1.14)
This can be written in a matrix notation as
(—iy"0p +m1)¥(z) =0 (1.15)

Here 1 denotes the identity matrix , 1 = §,5. v are four matrices obeying
the anticommutation rules, or the Clifford algebra relations,

A 4 AR = 2L (1.16)

One set of matrices satisfying these relations is given by

0 __ 1 0 i 0 O'i

The identity in the above expression for 7° is the 2 x 2-identity matrix. The
gamma matrices are 4 x 4-matrices. ¢* are the Pauli matrices.

do(00) A= (T ) (D 0)
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Clearly, a similarity transform of the above set of v’s will also obey the
Clifford algebra. The fundamental theorem on Clifford algebras states that
the only irreducible representation of the y-matrices is given by the above
set, up to a similarity transformation.

The Lagrangian for the Dirac equation is

L=U(iy-0—m¥ (1.19)
¥ is related to the conjugate of ¥ as
@ =wiy (1.20)
The Lorentz transformation of the Dirac spinor is given by
V'(z) =S ¥(L ') (1.21)

where 2/ = (L)¥z¥ is the Lorentz transformation of the coordinates. In-
finitesimally, ©/# &~ z* + w¥z", where w*” = —w"# are the parameters of the
Lorentz transformation. The transformation of the spinors is then given by

V() ~ <1 - %MWMW> o (z) (1.22)

M, =i(x,0, —2,0,) + Suv (1.23)
Sy is the spin term in M,,,,

1
S,uu = _E['Y,uv%/] (1-24)

By evaluating S12 = S3, one can check that ¥ corresponds to spin % Some

further details on relativistic transformations are given in the appendix.
There are two types of plane wave solutions, those with pg = v/p? + m2 =

E, and those with py = —FE, = —/p? + m2. They can be written as
U(z) = up(p) e P = u,(p) e~ PO HIP (1.25)
for the positive-energy solutions and
U (x) = vr(p) €7 = v, (p) P P (1.26)

for the negative-energy solutions. In these equations we have written the signs
explicitly in the exponentials, so that pg in pz is F for both cases.
The spinors u,(p), v.(p), r=1,2, are given by

u,(p) = Blp)w,,  v(p) = B(p)w, (1.27)

where
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1 0 0 0
0 1 - 0 - 0
w1 = 0 5 wo = 0 N w1 = 1 5 wo = 0 (128)
0 0 0 1
and
E+m o-p
2m 2m(E +m
B(p) = ) (1.29)
o-p E+m
2m(E 4+ m) 2m

Here E = \/p? + m? and we have used the representation for the gamma
matrices given earlier.

It is easily seen that B(p) is the boost transformation which takes us
from the rest frame of the particle to the frame in which it has velocity
v’ = p'/E. From the Lorentz transformation properties, it is clear that ¥T¥
is not Lorentz invariant. So we have chosen a Lorentz invariant normalization
for the wave functions

ﬁr(p)us (p) = 57“57 ﬁr(p)vs(p) = _57“5 (130)

Using the definition of B(p), we can establish the properties

Y w @) = T2 S ) = P (g

- 2m - 2m

The completeness relation for the solutions is expressed by

Z ur(p)ur(p) — vr(p)or(p) =1 (1.32)

T

Further i
U (p)y*us(p) = %&s = 0, (p)v"vs(p) (1.33)
ul(p)vs(p) = v} (P)us(—p) =0 (1.34)

The chirality matrix 75 is defined by

15 =iyl
i
= qemas?" 17"y’ (1.35)

In the explicit representation of y-matrices given above

e = ((1) (1)) (1.36)

Another useful representation is
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0 __ 0 1 i O O'i
T 1 0) T =6t 0
s (-1 0
o _(O 1 (1.37)

The left and right chirality projections are defined by

1
U, = (1 + '75)@, Vg = 5(1 - ’75)!? (1.38)

1
2
They correspond to eigenstates of 75 with eigenvalues +1, respectively.
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2 The Construction of Fields

2.1 The correspondence of particles and fields

Ordinary point-particle quantum mechanics can deal with the quantum de-
scription of a many-body system in terms of a many-body wave function.
However, there are many situations where the number of particles is not
conserved, e.g., the S-decay of the neutron, n — p + e 4+ U.. There are also
situations like eTe™ — 2v where the number of particles of a given species
is not conserved, even though the number of particles of all types taken to-
gether is conserved. In order to discuss such processes, the usual formalism
of many-body quantum mechanics, with wave functions for fixed numbers of
particles, has to be augmented by including the possibility of creation and
annihilation of particles via interactions. The resulting formalism is quantum
field theory.

In many situations such as atomic and condensed matter physics, a nonrel-
ativistic description will suffice. But for most applications in particle physics
relativistic effects are important. Relativity necessarily brings in the possi-
bility of conversion of mass into energy and vice versa, i.e., the creation and
annihilation of particles. Relativistic many-body quantum mechanics neces-
sarily becomes quantum field theory. Our goal is to develop the essentials of
quantum field theory.

Quite apart from the question of creation and annihilation of particles,
there is another reason to discuss quantized fields. We know of a classical field
which is fundamental in physics, viz., the electromagnetic field. Analyses by
Bohr and Rosenfeld show that there are difficulties in having a quantum
description of various charged particle phenomena such as those that occur
in atomic physics while retaining a classical description of the electromagnetic
field. One has to quantize the electromagnetic field; this is independent of any
many-particle interpretation that might emerge from quantization. Similar
arguments can be made for quantizing the dynamics of other fields also.

There are two complementary approaches to field theory. One can postu-
late fields as the basic dynamical variables, discuss their quantum mechanics
by diagonalization of the Hamiltonian operator, etc., and show that the re-
sult can be interpreted in many-particle terms. Alternatively, one can start
with point-particles as the basic objects of interest and derive or construct
the field operator as an efficient way of organizing the many-particle states.
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We shall begin with the latter approach. We shall end up constructing a field
operator for each type or species of particles. Properties of the particle will
be captured in the transformation laws of the field operator under rotations,
Lorentz transformations, etc. The one-to-one correspondence of species of
particles and fields is exemplified by the following table.

Particle Field
Spin-zero bosons o(x,t), ¢ is a real scalar field
Charged spin-zero bosons ¢(x,t), ¢ is a complex scalar field
Photons (spin-1, massless bosons) A, (x,t), real vector field
(Electromagnetic vector potential)
Spin—% fermions (e*, quarks, etc.) Y. (x,t), a spinor field

The simplest case to describe is the theory of neutral spin-zero bosons, so we
shall begin with this.

2.2 Spin-zero bosons: construction of the field operator
We consider noninteracting spin-zero uncharged bosons of mass m. The wave

function uy(x) for a single particle of four-momentum k,, was given in Chapter
1. With the box normalization,

ug(z) = G (2.1)

The states of the system can evidently be represented as follows.

|0) = vacuum state, state with no particles.

|1x) = |k) = one-particle state of momentum k, energy ko = V' k* + m?2 = wy,.
[1k,, 1k,) = |k1, k2) = two-particle state, with one particle of momentum k;
and one particle of momentum ks, with corresponding energies.

[Pk, Mky, - - - ) = many-particle state, with ny, particles of momentum k1, ng,
particles of momentum k-, etc.

We now introduce operators which connect states with different numbers
of particles. It is sufficient to concentrate on states |0}, |1%), |2k), ...|nk) with
a fixed value of k, introduce the connecting operators and then generalize to
all k. We thus define a particle annihilation operator ax by
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ag|ng) = aplng — 1) (2.2)
Since the vacuum has no particles, we require
axl0) =0 (2.3)
The many-particle states are orthonormal, i.e.,
(00) = (Lk[1k) = (2k[2k) = ... =1 (24)
(nk|ny) =0, ny, # nj, (2.5)
From (2.2), we can then write, omitting the subscripts k for a while,
(n—1laln) = ay, (2.6)
Since (1)|A¢) = (AT1)|@) for an operator A, (2.6) gives
(aT(n—1)n) = an (2.7)

This shows, with the orthogonality (2.5), that a|n — 1) must be proportional
to |n). Thus a' is a particle creation operator and we may write, from (2.7),

atfn) = g 4fn + 1) (2.8)
The operators aa’ and a'a are diagonal on the states. We have
a'aln) = |an|* n) (2.9)

Further, a’al0) = 0 using (2.3); thus ag = 0.

The only quantum number characterizing the state |n), since we are look-
ing at a fixed value of k, is the number of particles n. We shall thus identify
a'a as the number operator, i.e., the operator which counts the number of
particles; this is the simplest choice and gives «;,, = v/n. (An irrelevant phase
is set to one.) Notice that aa', the other diagonal operator, is not a suitable
definiton of the number operator, since (0laa’|0) = 1. With the identification
of a'a as the number operator, we have

aln) = +/n |n— 1), allny =vn+1|n+1) (2.10)
These properties of a, a’ may be summarized by the commutation rules
[a,a) =0, [al,a’]=0, [a,a]=1 (2.11)

In fact, these commutation rules serve as the definitions of the operators
a, a'. With the definiton of the vacuum by a|0) = 0, (0]0) = 1, we can
recursively build up all the states.

So far we have discussed one value of k. We can generalize the above
discussion to all values of k by introducing a sequence of creation and anni-
hilation operators with each pair being labeled by k. Thus we write
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ak|nkl,nk2,...,nk,...>: \/ﬁk |nk1,nk2,...,(n—1)k,...>
aL|nkl,nk2,...,nk,...>: Vg + 1 [ne, gy, (4 Vg, .00
(2.12)

with the commutation rules
[ak, a;] =0, [al,al] =0, lay, al] = Ou (2.13)

Our discussion has so far concentrated on the abstract states, labeled by
the momenta. It is possible to represent the above results in terms of the
wave functions (2.1). We can actually combine the operators ag, a}; with the
one-particle wave functions uy(x) and define a field operator ¢(x) by

o) =Y [ar wil@) + af ui(@) (2.14)

k

Since uy, and uj, obey the Klein-Gordon equation, we see that ¢(x) obeys the
Klein-Gordon equation, viz.,

@+ m?)¢(z) =0 (2.15)

As we noticed in Chapter 1, the wave functions actually obey the equation

iguk =1 =VZ+m? u (2.16)
ot

The operator v —V2 4+ m?2 is not a local operator. Since we would like to
keep the theory as local as possible, we choose the second-order form of the
equation. One may also wonder why we could not define a field operator
just by the combination ), ajuy or its hermitian conjugate. The reason is
that, once we decide on the Klein-Gordon equation rather than its first order
version (2.16), the complete set of solutions include both the positive and
negative frequency functions, i.e., both uy(z) and uj(z). Combining these
together as in (2.14), we can reverse the roles of (2.14) and (2.15). We can
postulate (2.15) as the fundamental equation for ¢(x), and then the expansion
of ¢(x) in a complete set of solutions will give us (2.14). The coefficients of
the mode expansion, viz., ag, a;fc are then taken as operators satisfying (2.13).
This leads to a reconstruction of the many-particle description, but with the
field ¢(z) as the fundamental dynamical object. Notice that the negative
frequency solutions, which are difficult to be interpreted as wave functions in
one-particle quantum mechanics, now naturally emerge as being associated
with the creation operators.

In terms of the field operator ¢(z), the many-particle wave function for a
state |ng,, nk, ...) may be written, up to a normalization factor, as

U(xy,22...xn5) = 0|gp(z1)p(x2) ... |Nkeys Mgy - -+ ) (2.17)
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where N = ng, + ng, + .... From the fact that the ai’s commute among
themselves, we see that the wave function ¥ (z1, 22 ... xy ) is symmetric under
exchange of the positions of particles. The particles characterized by the
commutation rules (2.13) are thus bosons.

To recapitulate, we have seen that we can introduce creation and annihi-
lation operators on the Hilbert space of many-particle states. They obey the
commutation rules (2.13); the field operator ¢(x) is constructed out of these
and obeys the Klein-Gordon equation. Conversely, one can postulate the field
¢(z) as obeying the Klein-Gordon equation; expansion of ¢(z) in a complete
set of solutions gives (2.14). The amplitudes or coefficients of this expansion
can then be taken as operators obeying (2.13). One can then recover the
many-particle interpretation.

The field operator ¢(x) is a scalar; it is hermitian and so, corresponds,
classically to a scalar field which is real. The particles described by this field
are bosons.

2.3 Lagrangian and Hamiltonian

The field operator ¢(x) obeys the equation of motion
@+m*)¢=0 (2.18)

If ¢(x) were not an operator but an ordinary c-number field ¢(z), we could
write down a Lagrangian and an action such that the corresponding vari-
ational equation (or extremization condition) is the Klein-Gordon equation
(2.18). Such a Lagrangian is given by

L= 1[(0,90"p) — m?p?] (2.19)

with the action, for a spacetime volume X/,

S:/ d*z L (2.20)
Py

The equation of motion can be derived as the condition satisfied by the fields
which extremize the action S with fixed boundary values for the fields; i.e.,
as the condition §S = 0. We find

53:/2 d'z [—(@+m?)e] o + ﬁz dot (9,p)dp (2.21)

We consider variations with the value of ¢ fixed on the boundary 90X of X.
i.e., ¢ = 0 on 0X and the extremization of the action gives the equations of
motion

@O+m*p= 0 (2.22)

since d¢ is arbitrary in the interior of X.
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Notice that the Lagrangian £ is a Lorentz scalar. If we write the action
as

S= /dt @z [2(00p)? — 2{(Vp)? + m??}] (2.23)

we see that it has the standard form [dt (T — U), with the kinetic energy
T = [d3z £(0op)? and potential energy U = [ d3z $[(Vp)? + m??]. The
Hamiltonian is given by

H=T+U = /d% 1 [(Gop)? + (V) + m?p?] (2.24)

If we now replace the c-number field ¢ by the field operator ¢(x), we get a
Hamiltonian operator

H = /d% 3 [(009)* + (Vo) + m?¢?| (2.25)
Use of the mode expansion (2.14) for ¢(z) gives

H= Y wyalar +> 1w (2.26)
k k

where wy, = ko = Vk* + m2. Acting on the many-particle states, alak is the
number of particles of momentum k, and thus H in (2.26) gives the energy
of the state, except for the additional term %wk. This term is the energy
of the vacuum state and is referred to as the zero-point energy. It arises
because of the ambiguity of ordering of operators. The c-number expression
(2.24) does not specify the ordering of a;’s and az’s when we replace ¢ by
the operator ¢. We have to drop the zero-point term in (2.26) and define the
Hamiltonian operator as

H= Z Wk azak (2.27)
k

to obtain agreement with the many-particle description. Actually there are
more fundamental reasons to subtract out the zero-point term as we have
done. This has to do with the Lorentz invariance of the vacuum, as will be
explained later. For the moment, we may take it as part of the rule of quan-
tization, i.e., in replacing ¢ by the operator ¢, we must choose the ordering
of operators such that the vacuum energy is zero.

Analogous to the definition of the Hamiltonian, we can define a momen-
tum operator

Pi=> ki ajay (2.28)
k

which can be checked to give the total momentum of a many-particle state.
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The Lagrangian has essentially all the information about the theory; it
gives the equations of motion, operators such as the Hamiltonian and mo-
mentum, the commutation rules, as we shall see later, and is a succinct way
of specifying interactions, incorporating symmetries, etc. It will play a major
role in all of what follows.

2.4 Functional derivatives

A mathematical notion which is very useful to all of our discussion is that of
the functional derivative. The action S is a functional of the field p(z), i.e.,
its value depends on the specific function ¢(x) we use to evaluate it. More
concretely, we may specify ¢(x) by an expansion in terms of a complete set
of functions f,(x) as

p(r) = cn fol) (2.29)

We can specify the function p(z) by giving the set of values {c,}. One set
of values {c,} gives one function, a different set {c},} will give a different
function and so on. Thus variation of the functional form of p(x) is achieved
by variation of the ¢,’s; i.e.,

p(x) + Sp(x) =D (ca+dcn)fulz) (2.30)

() =Y dep fulz) (2.31)

A functional, i.e., a quantity that depends on the functional form of another
quantity ¢(x), can be written generically as

I[p] = /2 d*z p(e,0p,...) (2.32)

For most of the applications in our discussions, we shall only need the varia-
tions of functionals like I[p] when we change ¢ in the interior of X| keeping
the values of ¢ on the boundary fixed. This means that we can evaluate
the variation of I[p] by carrying out partial integrations if necessary, using
0w =0 on Y. The variation can then be brought to the form

5[] = /Ed4:c o(z)dp(z) (2.33)

The functional derivative %{I) is then defined as o(x), the coefficient of
dp(x). For example,
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dp(y)
6@2) /Z d'y ©*(y) = 2¢(x)
g 4 2
o [ @0 =2(-Dela)) (2.34)
From (2.21,2.22), we see that
5‘?3) = @O+ m?)p(x) (2.35)

and the equation of motion is just % =0.

We shall now express a little more precisely the ideas of functional vari-
ations and derivatives. ¢(z) is real-valued, so let us define a space which is
the set of all real-valued functions from the spacetime region X to R, the
real numbers. Since we shall be considering functionals like the action, which
involve integrals of ¢? and (9p)?, we require further that the functions we
consider satisfy

/ d*z ¢? < oo, / d*z (0p)? < 00 (2.36)
by b
We may thus specify the function space F as

F = {set of all ¢ 's such that ¢ : ¥ — R,
with the finiteness conditions (2.36)} (2.37)

Elements of F are functions; if desired, one can also define a mode expansion
which furnishes a basis for F. A functional like the action is simply a map
from F into the real numbers; i.e., it is a real-valued function on F. The
functional derivative is thus the usual notion of derivative applied to this
function. Of course, the function space F is infinite-dimensional, since in
general we need an infinite number of functions f,(z) to obtain a basis; as a
result, one has to be careful about the convergence of sums and integrals.

The conditions (2.36) are relevant for the problem of the scalar field. In
different physical situations, the conditions defining a suitable function space
may be different. Likewise, the functions may not always be real-valued. In
any case, it is clear that one can, in a way analogous to what we have done,
define a suitable function space and functional derivatives.

2.5 The field operator for fermions

The wave functions for free spin—% particles have been given in Chapter 1 as
the solutions of the Dirac equation. We shall now introduce the creation and
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annihilation operators. Annihilation and creation operators for the particle
are denoted by a,, and a;m, and those for the antiparticle are denoted by
by, and b;)r. (r labels the spin states.) The important difference with the
spin-zero case is that spin—% particles are fermions. (This is part of a general
result, which tells us that integral values of spin correspond to bosons and
half-odd-integral values of spin to fermions. This “spin-statistics theorem”
will be discussed later.) For fermions, we have the exclusion principle; there
cannot be double occupancy of any state. Consider a fixed value of momentum
and fixed spin state. Dropping indices for the moment, the states are |0},
c |1) = a'|0), where ¢ is a normalization factor and [2) = (a')2|0) = 0.
Since there cannot be a two-particle occupancy of the state, we need (af)? =
0, (b7)% = 0, which also gives

a’ =0, b =0 (2.38)

The vacuum state or the state of no-particles |0) obeys
al0) =b]0) =0 (2.39)
We can define afa as the particle number operator, as before. This leads to
atal0) =0, atall) = |1) (2.40)

This shows that a|l) = (1/c)|0) and the above equation, along with this,
gives |c|> = 1 from the orthonormality of states. We also have the results
(0]aa’|0) = |¢|?> and (1]|aa’|1) = 0. The combination aa® 4 afa is thus equal
to one, on both the states |0) and |1). We shall thus use the anti-commutation

rules
a>=0, (a")?=0, ad" + dla=1 (2.41)

for the operators a, a', and similarly for the antiparticle operators. Notice
that it is inconsistent to impose a rule like aat — ata = constant. The gener-
alization of the rules (2.41) with momentum and spin labels is
T T =68
Up,rQy, g + A (Apr = OrsOpk

bpyrbz,s + bL,sbPW = 0rs0p,k

ap,rQk,s + Qg sy, =0, af .al  +af al, =0 (2.42)
bp,rbi,s + bi,sbp,r =0, bl bf , + 0k bh . =0
ap,rbr,s + br,sapr =0, ap,rbL)S + b,lsap_,r =0
aL,Tbk,s + bk,sa;r =0, a;‘wbl)s + b,lsa;f,yr =0

It can also be checked that, starting from these rules and defining the vacuum
state by ap »|0) = bp.»|0) = 0, we can recursively obtain all the multiparticle
states of the fermions.
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We now combine these operators with the one-particle wave functions
to construct the fermion field operator. We can combine u,.(p) e~#* with
ap.r- The solution v,(p) €’?® has an exponential e’ indicating that it must
be interpreted as the conjugate wave function, corresponding to creation of
particles. It must be combined with a creation operator. However, we cannot
use af .; if we do, the combination ay ru,(p) €~** + af .v,(p) € does not
have definite fermion number or charge, since one term annihilates particles (a
process with a change of —1 for fermion number) and the other term creates
them (a process with a change of +1 for fermion number). We must thus use
b;;)r; this is consistent since annihilating particles and creating antiparticles
change charge or fermion number by the same amount. The field operator is
thus given by

W) =3\ e wrp)e ™ 4 B o ()]
p,r P

1&(55) = Z \/ Emv [a;fwar(p)eipz + bp,rﬁr(p)eiim] (2.43)
p,r p

These obey the equations

(iy -0 —m)p =0, — 0,y —map =0 (2.44)

We have used the complete set of solutions to the equations (2.44); one may
therefore think of (2.44) as the starting point. Writing the general mode
expansion for the fields 1 and 1, one can interpret the coefficients as operators
obeying the anti-commutation rules (2.42) and thus recover the many-particle
picture.
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3 Canonical Quantization

3.1 Lagrangian, phase space, and Poisson brackets

In this chapter we develop the essentials of canonical quantization. Instead of
constructing fields in terms of particle wave functions, we consider fields as
the fundamental dynamical variables and discuss how to obtain a quantum
theory of fields.

We shall first consider bosonic fields. The fields will be denoted by ¢, (z).
The index r or part of it may be a spacetime index for vector and tensor fields;
it can also be an internal index labeling the number of independent fields.
The Lagrangian L is a scalar function of ¢, (z) and its spacetime derivatives.
We shall assume that the equations of motion are at most second order in
the time-derivatives. Correspondingly, £ involves at most (Jpp)?. This is
the most relevant case. If the equations of motion involve higher-order time-
derivatives of the fields, there are usually unphysical ghost modes (modes
which have negative norm in the quantum theory). (There is a generalization
of the canonical formalism for theories with higher than first-order derivatives
in time; this is due to Ostrogradskii.) Higher powers of (Jyp) also generally
lead to difficulties in quantization and do not seem to be relevant for any
realistic situation. We shall not discuss these situations further.

Since the Lagrangian has at most the square of (Jg), we expect, based
on Lorentz invariance, that £ is at most quadratic in space-derivatives as
well. (There are some topological Lagrangians with one time-derivative and
several different space-derivatives of fields. We will not consider them here;
some examples are briefly discussed in Chapter 20 which describes geometric
quantization.) The action in a spacetime volume X can be written as

S = /d4x L(pr, Oppr) (3.1)
=

The spacetime region will be taken to be of the form V' x [ty,t;], where V is a
spatial region. The equations of motion are given by the variational principle,
viz., the classical trajectory o, (x, t), which connects specified initial and final
field configurations ¢, (z,t;) and ¢, (x,ts) at times ¢; and ¢y, extremizes the
action. In other words, we can vary the action with respect to ¢(ax,t) for
t; <t <ty andset 6S to zero to obtain the equations of motion. Explicitly
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oL oL
0L ==—"bp, + ————
00, " T 90

oL 0 oL 0 oL
=9 o (am}é“"r * (awmé%) (3.2)

(Summation over the repeated index, in this case r, is assumed as usual.)
When we integrate the variation of £ over the spacetime region X to obtain
4S8, the second term in (3.2), being a total divergence, becomes a surface
integral over 0X. Since we fix the initial and final field configurations ¢, (x, t;)
and o (x,tr), 0, = 0 at t;, ty. Further, we assume that either dg, or %
vanishes at the spatial boundary 0V. Eventually, we are interested in the
limit of large spatial volumes; this condition is physically quite reasonable
in this case; alternatively, we could require periodic boundary conditions for

the spatial directions. Either way the surface integral is zero and

oL 0 oL
5S:/d4x { S ———— Y7 3.3
= Opr Ozt O(Oupr) v (3.3)

Oudpr

The extremization condition §S = 0 now yields the equations of motion, since
d¢p, is arbitrary, as

o o o
Oy Ozr A(Oupr)

We now consider more general variations of fields, with dp, not zero at
t; or ty. The total divergence term in (3.2) integrates out to O(ty) — O(t;),
where
oL

3
o(t) —/Vd x 8(8()@”5(;% (3.5)
This quantity © is called the canonical one-form.

In the variation of the action when using the variational principle, we
specify the initial and final values of the field configurations. Since there
is then a unique classical trajectory, we may say that the initial and final
values label the classical trajectories. The set of all classical trajectories is
defined to be the phase space of the theory. Alternatively, we can specify the
classical trajectories by the initial data for the equations of motion rather
than initial and final values for the field. Since our equations are second
order in time-derivatives, the initial data are clearly ¢, (x,t) and do,(z,t),
at some starting time ¢. It will be more convenient for the formalism to use

oL
8(80 @T)

rather than 0y, The phase space for a set of scalar fields is thus equivalent
to the set {m(x), @.(x)} (for all ) which is used to label the classical tra-
jectories. The phase space for a field theory is obviously infinite-dimensional.
7y is called the canonical momentum conjugate to ;.

=0 (3.4)

m(x,t) = (3.6)
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The canonical one-form @ can be written as
6= / d*z 7,80, (3.7)
v

(The name is due to the fact that this is a differential one-form on the phase
space, as will be explained in Chapter 20.) We will denote the phase space
variables (coordinates on the phase space) by &(x) for a general dynamical
system, which could be more general than a scalar field theory. The canonical
one-form @ is identified from the surface term in the variation of the action
and has the general form

0= / B A€, ) 66 (x) (3.8)

where A; could depend on £. (For the scalar field & = (m,.,p,) and A; =
(7,0).) Given O, we define

/ g , §
i (w, ') = WAj(w) - W&(fﬂ)
= 81AJ — 6JA[ = —jS(:v’,w) (39)

where in the last line, we have introduced the composite indices I = (i, x)
and J = (j,2') and 9; = §/5¢(x) to avoid clutter in the notation. 2 is called
the symplectic structure or the canonical two-form. (It can be considered as
a differential form on the space of fields and their time-derivatives.) Just as
the metric tensor defines the basic geometric structure for any spacetime, {2
defines the basic geometric structure of the phase space. Notice that from the
definition of {2, we have the Bianchi identity

018255 +0;02k1 + 0K 217 =0 (3.10)

A concept of central importance in canonical quantization is that of a
canonical transformation and the generator associated with it. Let & —
&+ a'(€) be an infinitesimal transformation of the canonical variables. This
transformation is called canonical if it preserves the canonical structure f2.
The change in {2 arises from two sources, firstly due to the £-dependence of
the components £2;; and secondly due to the fact that {27 ; transforms under
change of phase space coordinate frames. (§2;; transforms as a covariant
rank-two tensor under change of coordinates.) The total change is

002y = O0rag — 0jay
80Qi(x, ') = Lo«(m’) _ 0
T 6 () 667 (')

a;(x) (3.11)

where
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oy = CLKQK]

a;(x) = /Vd3:v' a® (") Qi (', x) (3.12)

(In these equations, we have expanded out the composite notation to show
how it works out.) From (3.11, 3.12), we see that the transformation & —
&+ a*(§) will preserve {2 and hence be a canonical transformation, if

CYIEGK.QK]:—@] G (313)

for some function G of the phase space variables. G so defined is called the
generator of the canonical transformation. (Equation (3.13) is a necessary
and sufficient condition locally on the phase space. If the phase space has
nontrivial topology, the vanishing of 62 may have more general solutions.
Even though locally all solutions look like (3.13), G may not exist globally
on the phase space. We shall return to the case of nontrivial topology in later
chapters.)

If we add a total divergence 9,F* to the Lagrangian, the equations of
motion do not change, but © changes as ©® — 6 + 6fd3:v FO. This is of
the form (3.13) with Ay — Ay + 9 fFO and hence (2 is unchanged. Thus
the addition of total derivatives to a Lagrangian is an example of a canonical
transformation.

The inverse of (2 is defined by (2711702, = §L. which expands out as

/ B’ (27 (@, 2 (!, 2") = 61, 0P (x — 2”) (3.14)
14

As will be clear from the following discussion, it is important to have an
invertible 27;. If {2 is not invertible, the Lagrangian is said to be singular.
There are many interesting cases, e.g., theories with gauge symmetries, where
it is not possible to define an invertible 2 in terms of the obvious field vari-
ables. One has to define a nonsingular {2 in such cases, by suitable elimination
of redundant degrees of freedom. (A gauge theory is an example of this; the
redundant variables are eliminated by the procedure of gauge-fixing.)
Using the inverse of 2, we can rewrite (3.13) with an 27! on the right-
hand side as
ol = (27 H0,;G (3.15)

The discussion from equation (3.11) to (3.15) shows that to every infinitesimal
canonical transformation, modulo the topological issues mentioned above, we
can associate a function G on the phase space, and conversely, given any
function G we can associate to it an infinitesimal canonical transformation.

The change of any function under the transformation ¢/ — &7 + al is
given by the action of the functional differential operator V, = a’d;. The
commutator of two such transformations is given by

[Va, V] = (a70,0" — b7 0,a") 0; (3.16)
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Let F, G be the functions associated, via (3.15), with a! and b’, respectively.
We then find
CLJanI _ bJa]CLI _ [(971)JL8J(!271)1K _ (Qfl)JKaJ(Qfl)IL] oL F 0xG
HOQ YK [0,F0,0KG — 0,0k FOLG)
(3.17)

(27 1)L, YK — (K o L) = (27 1)IM (07 1)/L (1)K
X [On 205 + 052N 0]
— (27 ()T YK 9,0y
= (" HMyy (2 HKE (3.18)

where we have used the identity (3.10). This can now be used to simplify
(3.17) as

a’osb" =70 0" = (7)Mo [(27 1) 0k GOLF) (3.19)

This shows that if a < F, b < G, the commutator of the corresponding
infinitesimal transformations corresponds to a function —{F, G}, where

{F.G} = (") 0rFo,G
. 0F  0G
= [ &z &P (271 N —— 2
[#edd @ Ve msats )
The function {F,G} is called the Poisson bracket of the functions F' and G.
It arises naturally in the composition of canonical transformations. For the
¢D's themselves, we find {¢!,¢7} = (27117 or

{€'(x), & (=)} = (271)" (z, 2) (3.21)

Notice also that if © has the simple form (3.7), the Poisson bracket of two
functions F(7,¢), G(m,¢) of the phase space variables becomes

O0F 6G  OF 0G
_ 3 _
{F,G} = /Vd x LSSDT 5 3 bon (3.22)

Comparing equation (3.13) with the definition of Poisson brackets, we see
that it is equivalent to

al = 6¢ = {¢1,GY (3.23)

In fact, this equation may be taken as the definition of the generator. Con-
versely, for any function G on the phase space, the transformations on &7
defined by (3.23), i.e., Poisson brackets with G, are canonical. Notice that for
the simple case of &' = (7., ¢,), (3.23) is equivalent to

5G 5G
e Ol e (3.24)

5‘PT (CC)
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More generally, the change of any function F' under a canonical transforma-
tion generated by G is given by

oF = aIBIF = (Q‘l)IJ(?JGB]F
={F.G} (3.25)

These equations show why Poisson brackets are important. The change of
any variable, so long as it is canonical, is given by the Poisson bracket of the
variable with the generating function for the transformation.

We now find the generators of some important canonical transformations.

1. Change of ¢, ().
For ¢, — ¢, + a.(x), m — 7y,

= 3:10(1 )T\ .
G‘/Vd (@) () (3.26)

2. Change of m(x).
For ¢, — @, m — 7 + ar(x),

= — S.ICLCB xr .
G- /vd (@) (x) (3.27)

3. Space translations.
For 2* — z' 4+ a’, a* being constants, dp, = a'0;p,, dm, = a*0;m, and

G = / Bz a'0o,m, = a' P (3.28)
\4

P :/ 3z 0y, (3.29)
v
The generator of space translations, P;, is the momentum of the system.

4. Time translations.

The generator of time translations is the Hamiltonian H (, ¢); this is the
definition of the Hamiltonian. From (3.24), this means that the equations of
motion should be of the form

oH oH
dospr = o Oomr = o (3.30)
One can easily see that
H :/ d*z (7000 — L) (3.31)
%

The easiest way to check this is to use (3.31) to write the action as
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S = /d% 7 00@r — /dt H (3.32)

and then use the variational principle to write the equations of motion. The
equations of motion so obtained are seen to be (3.30), showing the consistency
of (3.31) as the generator of time translations.

The Hamiltonian and momentum components can be expressed in terms
of an energy-momentum tensor 7}, defined by

oL

——— — nuwl + 0%Bau 3.33
8(8”(;77«) 77# M ( )

Ty = Outpr
where Bq,,, is related to spin contributions. (We discuss this a little later in
this chapter.) In terms of T},,,

P,=(H,P) :/ d*z T (3.34)
14

Notice that the tensor B,,, does not contribute to the expressions for P,.

5. Lorentz transformations.
For Lorentz transformations, dz* = w”z,. The generator of Lorentz
transformations can be checked to be

M, = /Vdga: (xpTyvo — v Tpo) (3.35)

3.2 Rules of quantization

As with any quantum mechanical system, the states are represented by vec-
tors (actually rays) in a Hilbert space H. The scalar product (pla) = ¥, [¢]
is the wave function of the state |«) in a p-diagonal representation; it is the
probability amplitude for finding the field configuration ¢(z) in the state |«).

Observables are represented by linear hermitian operators on H. Fields
are in general linear operators on H, not necessarily always hermitian or
observable. We have the operator ¢, (x,t) corresponding to ¢, (x,t) and the
operator 7, (x, t) corresponding to the canonical momentum.

The change of any operator F' under any infinitesimal unitary transfor-
mation of the Hilbert space is given by

i 0F = FG — GF = [F,G] (3.36)

where G is the generator of the transformation; it is a hermitian operator.
If we were to start directly with the quantum theory, we can regard this
as the basic postulate. The fact that observables are linear hermitian oper-
ators follow from this because observations or measurements correspond to
infinitesimal unitary transformations of the Hilbert space.
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However, in starting from a classical theory and quantizing it, we need a
rule relating the operator structure to the classical phase space structure. The
basic rule is that, in passing to the quantum theory, canonical transformations
should be represented as unitary transformations on the Hilbert space. The
generator of the unitary transformation is obtained by replacing the fields
in the classical canonical generator by the corresponding operators. (This
replacement rule has ambiguities of ordering of operators; e.g., classically,
mrpr and .. are the same, but the corresponding quantum versions m, ¢,
and ¢, 7, are not the same, since ¢,- and 7, do not necessarily commute. The
correct ordering for the quantum theory can sometimes be understood on
grounds of desirable symmetries. There is no general rule.)

Comparing the rule (3.25) for the change of a function under a canonical
transformation with the rule (3.36) for the change of an operator under a
unitary transformation, we see that —i[F, G] should behave as the Poisson
bracket {F,G} in going to the classical limit. Therefore the commutator
algebra of the operators, apart from ordering problems mentioned above, will
be isomorphic to the Poisson bracket algebra of the corresponding classical
functions.

The finite version of (3.36) is

F' =¢% F i@ (3.37)
The transformation law for states is given by
o) = €%|a) (3.38)

Equations (3.37) and (3.38) say that classical canonical transformations are
realized as unitary transformations in the quantum theory.

Many useful results follow from (3.36) to (3.38). From the generators
(3.26) and (3.27) of changes in ¢, and 7, we find, using (3.36),

[¢r(wa t)v bs (wlv t)] =0
mr(x,t), ms(x',1)] = 0
[pr(, ), mo(x',1)] = i 0ps 0P (@ — 2) (3.39)

These give us the basic commutation rules, sometimes called the canonical
commutation rules, to be imposed on the operators of the theory. (More
generally, we would have [£¢(x, 1), & (2, )] = i(271)Y (z,2’).)

The generator of time-translations is the Hamiltonian and we get from

(3.36)

OF
iy = [F.H] (3.40)

This is the quantum equation of motion, called the Heisenberg equation of
motion.

Using the canonical commutation rules, one can also work out the commu-
tator algebra of various operators of interest. For example, using expressions
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(3.34,3.35) and replacing the fields and their canonical momenta by operators,
we get the operators P,, M,,, which give the action of the Poincaré trans-
formations on any quantity in the quantum theory as in (3.36). In particular,
using the canonical commutation rules, one can check that these operators
obey the Poincaré algebra commutation relations given in the appendix.

3.3 Quantization of a free scalar field

We now apply the rules of quantization to obtain the theory of a free scalar
field . The Lagrangian is

£ =1 [(09) - m??] (3.41)

In the quantum theory, the field becomes an operator ¢(x,t). The canonical
momentum is w(x,t) = do¢(x,t). The Hamiltonian is

H= / &Pz L1+ (Ve)? + m?2¢? (3.42)

The basic commutation rules are

6z, 1), p(a",1)] = O
(z,1), 7_‘_(:1:/, t)] =0
d(@, ), (@', 0)] = 0% (z — &) (3.43)

=X

The Heisenberg equation of motion becomes, using (3.42,3.43),
@O+ m?)¢ =0 (3.44)

The field operator obeys the Klein-Gordon equation.
Since ¢ commutes with itself, it is possible to choose a ¢-diagonal repre-
sentation where

Plp) = w(x)le) (3.45)

Here () is some c-number field configuration which is the eigenvalue for
@(x,t). In this case, we can write m(x) = —id/dp(x). This is the analog of the
Schrodinger representation. We can in fact understand the theory by writing
the Schrodinger equation, which would be a functional differential equation
in this case, and solving it for the eigenstates of the Hamiltonian. However,
the diagonalization of the Hamiltonian is most easily done in another repre-
sentation where we solve the equation of motion (3.44). (Evidently, we are
also using the Heisenberg picture where operators evolve with time.) The so-
lutions are obviously plane waves. Choosing a normalization as we have done
in Chapter 1, we can thus write the general solution to (3.44) as

d(@) =D [mur(z) + ajui()] (3.46)

k
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where
e—ik;ﬂ

o) = e

(wr = Vk* +m2.) (Notice that the uy, uj, appear here merely as mode func-
tions for the expansion of a general solution of the equation of motion.) The
fact that we have an operator is accounted for by considering the coeflicients
of the expansion ay, aL to be operators. Notice that since we have a real field
classically, we need a hermitian field operator and so the coefficient of u} (z)
in (3.46) must be the hermitian conjugate of aj. By using the orthogonality
property of the ug(x), uj(x) we have

(3.47)

ap = /dS:v up(z)(wg ¢ + im), aL = /d3:v ug(z)(wy & —imw) (3.48)

With these expressions, we can obtain the commutation rules for ay, a}; using
the fundamental commutation rules (3.43). We find

[ak, al] = 0
[a].a]] =0 (3.49)
[, a]] = 0w

The commutation rules for ay, az are the same as for the creation and anni-

hilation operators. These rules were obtained in Chapter 2 by considerations
of the many-particle states. Here they emerge as the fundamental rules of
quantization for the field ¢(a,t), which is the dynamical degree of freedom.

The mode expansion for the canonical momentum 7 is obtained from the
mode expansion (3.46) for ¢ as Jy¢. We can then evaluate the Hamiltonian
as

H = Z %Wk(akaL + aLa;g) =>, [wkalak + %wk] (3.50)
k
Similarly, the momentum operator P; is

P, = /(’%(bﬁ = Z %ki(akaz—i—azak) = kialak (3.51)
k

(We have used the commutation rules and ), k; = 0 to simplify the expres-
sions. Strictly speaking, such expressions have to be defined by regulating
the sum, which can be done by defining partial sums over N modes and then
taking the limit N — oo eventually. For the momentum operator, we are
using a reflection symmetric way of doing this, so that the contribution due
to k is cancelled by the contribution due to —k.)

We are now in a position to interpret these results. Apart from the con-
stant %wk—term, the Hamiltonian involves the positive operator afa. This is
positive since (a|atala) = PP (ala’|B)(Blala) = PP |(Blala)|? > 0. This can
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vanish only for a state obeying a|a) = 0. The lowest energy state, identified
as the vacuum state and denoted |0), can thus be defined by

arl0) =0 (3.52)

We see that the vacuum state has energy equal to ), %wk. This is an (infinite)
constant contribution to the energy and is a result of the ordering ambiguity
mentioned earlier. The classical expression does not tell us whether we must
use a,iak or %(a,iak + aka};). Actually the correct quantum operator should
be wkalak so that the vacuum has zero energy. This can be seen as follows.
The operators P, M,, obey the Poincaré algebra. In particular we have the
relation

(K, Pl =i 0 H (3.53)

If we have a unitary realization of the Lorentz transformations and if the
vacuum state is invariant under Lorentz transformations, so that different ob-
servers see the vacuum in exactly the same way, we have K;|0) = 0, (0|K; = 0;
the vacuum expectation value of (3.53) then shows that we must have
(0|H|0) = 0. This implies that H = )", wkalak is the correct expression.
Thus the requirement of Lorentz invariance of the vacuum can be used to
choose the correct ordering of operators in this case. Similar arguments can
be made for the momentum; the correct expression is P; = Ek kialak.
(For relativistic field theory, the requirement of invariance of the vacuum is
physically reasonable. In situations where we do not have Lorentz invariance,
e.g., in special laboratory settings with conducting surfaces or when we do
not have flat Minkowski space as in the neighborhood of a gravitating body,
the vacuum energy, or more precisely, the ground state energy, is impor-
tant and can lead to physical effects such as the Casimir effect or Hawking
radiation.) From now on we will consider the correctly ordered expressions
H=3%, wkalak and P; =), kiazak.

The vacuum state has H|0) = 0, P;|0) = 0. Consider now aL|O>. We have

H al|0) =wy al]0),  Pial|0) = k; al|0) (3.54)

This state has momentum k; and energy wi, = V/k* + m2. The relationship
between energy and momentum is what we expect for a relativistic point-
particle of mass m, and so we can identify aL|O> as a one-particle state of
momentum k;. Higher states can be obtained by the application of a string
of al’s to the vacuum state. An arbitrary state

..|0) (3.55)

can be seen, by evaluation of H and P; to be a multiparticle state with
nk, particles of momentum k; ( and corresponding energies), ny, particles
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of momentum k-, etc. The v/nz! factors are needed for normalization. One
can also compute the angular momentum of these states and show that they
are spin-zero particles. The states (3.55) give the full Hilbert space. In this
version, when the states are constructed from the vacuum by the application
of creation operators, the full Hilbert space also called a Fock space.

The N-particle wave function for an N-body state can be defined, up to
a normalization factor, as

U(x1, T2, ...2n) = (0|d(x1)P(x2)...0(xN)|N) (3.56)
where |N) is the N-particle state as in (3.55). For one- and two-particle states,
V(z) = up(x), V(w1 29) = up, (21)ur, (€2) + ur, (21)ur, (x2)  (3.57)

The two-particle wave function is symmetric under exchange of particles, due
to the fact that a’s commute. This shows that the particles described by the
scalar field are bosons.

In conclusion, through quantization of the scalar field, we have obtained
a description of spin-zero bosons. We have recovered the many-particle the-
ory starting from fields as the basic dynamical variables, complementing our
construction of the field operator from the many-particle approach.

3.4 Quantization of the Dirac field
The Lagrangian for the Dirac field is
L= 3(iy-0—mp (3.58)
The momentum canonically conjugate to 1 is given by
7 =il (3.59)

One may expect that the commutation rule is of the form [¢(zx), T (z")] =
§G)(x — "), but we shall see shortly that one has to use anticommutators for
the Dirac theory.

The Hamiltonian operator is given by

H= / d3z YT (i7" 0; + mA°)ep (3.60)

From our discussion of the plane wave solutions of the Dirac equation, we
can write the general solution as

v@) =3 gy [rus@)e ™ + e unp)e”]
pr p

ba) =Y |5 b a0 + e ] (3.61)
p,r p
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where E, = \/p? + m2. (We follow the convention of using E, for fermions,
rather than wy.) The normalization factors in (3.61) are chosen for later sim-
plifications. The coefficients of the plane wave expansion, viz., a ,, a;w Cp,rs
are operators in the quantum theory. Using this expansion and the orthonor-
mality properties of the v and v-spinors given in Chapter 1,

H=>" Epa} ap,—c} cpr) (3.62)
DT

;
Cp,r

If we use the canonical commutation rules for ¢ and %, we find that
a, a' and ¢, ¢! obey the commutation rules for the creation and annihilation
operators. Equation (3.62) then shows the difficulty of using commutation
rules. The Hamiltonian is not positive; there are states of negative energy.
The way to avoid this is to use anticommutation rules. First we redefine

—pt oo
Cp,r = bp_,ra Cpr = bpﬂ”

(3.63)

If we further assume the anticommutation rules bL)Tb;w + bk)sbz)r = 0rs0p.k,
the Hamiltonian can be written as

H=>" Ey(af apr+b},bp,) = > 2B, (3.64)
P

p,r

The change of sign for the second term is due to the anticommutation prop-
erty. (Since the fields ¢ and % involve sums over a,,, c,, and a;T, c};_’r,
we must take ay ,, a;_rr to have anticommutation rules as well, to have com-
mutation rules for the fields consistent with various physical requirements.)
We can now define the vacuum state by a, |0) = b, |0y = 0. The vacuum
energy (or the zero-point energy) — Zp 2E, has the opposite sign to what
we found for the scalar field. The magnitude per mode is actually the same,
%Ep for each of the two spin states of the positive energy solutions and for
the two spin states of the negative energy solutions. We shall redefine the
Hamiltonian by subtracting out the vacuum energy, for the same reasons as
before, viz., Lorentz invariance of the vacuum. The corrected Hamiltonian
then reads

H=>" Ey(a} ap,+ Db by, (3.65)

p,r
With the interpretation of a, ,, b, as annihilation operators and the vacuum
defined by ap.|0) = by, |0) = 0, we see that H is always positive.
The anticommutation rules can be formulated as follows.

{"/J(wv t)u "/J(wlv t} =0,
{w(cc, t)a 7T(.’1}/, t)} =0 (366)
{W(x,t), m(x' 1)} =i 6@ (z —a') 1

(The spinor labels are not explicitly shown; the term 1 on the right-hand
side refers to the identity for spinor labels. Also recall that 7 is 41, so that



30 3 Canonical Quantization

these anticommutation rules can be rewritten in terms of 1, 1T.) We use the
standard abbreviation AB + BA = {4, B}. Using the mode expansion for
the fields, the commutation rules can be obtained in terms of the operators
a, af, b, bt as

{apﬂ‘? ak,s} = {ap,ra bk,s} =

{ap.r,b] } = {a) . bes} = (3.67)
{ap,r; CLL)S} = 5T55p,k
{bpﬂ”’ bL,s} = 5T55p,k (3.68)

The hermitian conjugates of the relations (3.67) hold as well, although we
do not display them here. These rules are the same as what we obtained in
the discussion of fermions and subsequent construction of the field operator
in Chapter 2.

The momentum operator can be evaluated as

P, = / 3z Yt(—i 0y = Z pi [a} papr + 08 bpr] (3.69)

p,r

We also define a charge or fermion number operator by

Q= / Bzl =" [al ap, —bf by (3.70)

p,r

(We have chosen an ordering of operators in @ which makes it zero on the
vacuum. )

We can now study the states. The vacuum |0) has zero energy, momen-
tum, and charge. The next set of states are af ,.|0) and bj .|0). These have

energy E, and momentum p,. Since E, = \/p? + m?2, we see that these can
be interpreted as one-particle states of momentum p; and mass m. The label
r gives the spin states; these are spin—% particles. We have seen this in terms
of the one-particle wave functions in Chapter 1. It follows in our present dis-
cussion by noting that (0[¢(z)a],.|0) and (0[¢)(x)b] .|0) are the one-particle
wave functions discussed in that chapter. This result can also be checked by
direct calculation of the angular momentum. The states af ,.|0), b ,.|0) have
charges +1 and —1, respectively. We can thus interpret these as the states
of a single particle and its antiparticle. Evidently, a};m is a particle creation
operator, b;)r is an antiparticle creation operator; their hermitian conjugates
are the corresponding annihilation operators.

Multiparticle states can be obtained by applying a string of creation op-
erators to the vacuum state. Because of the anticommutation rules, we have
aT) al . = 0. Thus we cannot have more than one particle for every value of
p,7. This is the exclusion principle. Also we see that the two-particle wave
function given by
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<O|¢($1)¢($2)|pa T k? S>

— _ /ET:’V E?:’V (e—ipwle—ikwg _ e—ipmge—ilml) ur(p)us(k)

(3.71)

Wp,r;k,s(xla I2)

is antisymmetric under exchange of particles. From these two results we can
see that the Dirac field describes fermions.

The use of the anticommutation rule was necessary to avoid states of
negative energy. One may wonder how this ties in with the general idea
of observables being generators of unitary transformations in the quantum
theory since unitary transformations, infinitesimally, lead to commutation
operations.

Consider, for example, the Heisenberg equation of motion,

O
i = [, H] (3.72)

The Hamiltonian is of the form fhy |, h = i9°9*9; + m~°. Commutators
of the form [A, BC] can be written out in two ways, either as [A, B]C +
B[A, C], which is useful in evaluating commutators for a theory of bosons or as
{A, B}C — B{A, C}, which can be used for fermionic theories where the basic
rules are anticommutation rules. Thus we can have commutation operations
at the level of operators which are quadratic in (or generally even powers of)
the basic field variables. Hermitian operators involving even powers of the
fermionic field operators generate unitary transformations in the quantum
theory. We have consistency if we require that all observables involve even
powers of the fermionic field operators. With this condition, our quantization
for fermions is consistent with the general rule of quantization (3.36).

The spinor field must be quantized by anticommutation rules, that is, as
fermions obeying the exclusion principle in order to have a positive Hamilto-
nian.This is a special case of the more general spin-statistics theorem, which
states that

1. Quantization of half-odd integer spin fields or spinors using commutation
rules will lead to states of negative energy.

2. Quantization of integer spin fields using anticommutation rules will lead
to states of negative norm, which do not, therefore, admit a probabilistic
interpretation, or, in a different version, to lack of Lorentz covariance.

The consequence is that spin—%, —%, —g,... particles must be fermions while

spin-zero, -1, -2, ... particles must be bosons. Originally proved for relativistic
theories, this result has been improved over the years. Recently, there have
been attempts to prove such a spin-statistics theorem based only on certain
general topological arguments and the existence of antiparticles.



32 3 Canonical Quantization

3.5 Symmetries and conservation laws

A symmetry of a classical field theory is a transformation ¢ — ¢’ under which
the Lagrangian changes at most by a total divergence. A total divergence
integrates to a surface term in the action and so does not change the equations
of motion. Preserving the Lagrangian up to a total divergence is a sufficient
but not necessary condition for a symmetry of the equations of motion. It
is possible to have a symmetry of the equations of motion which is not a
symmetry of the Lagrangian (even up to total divergence). The simplest
example is nonrelativistic free particle motion described by

1 dztdxt
L= omar
A2zt
— =0 3.73

We see that any general linear transformation z? — M Jlij, where M is an
invertible constant matrix is a symmetry of the equations of motion, but only
those M’s which are orthogonal, viz., MT M = 1 preserve the Lagrangian.
However, in anticipation of the quantum theory, we shall be interested only in
symmetries which are canonical transformations; such symmetries preserve
the Lagrangian up to a total divergence.

There are many discrete symmetries of interest in physics such as parity
and time-reversal. We shall postpone their discussion for now and consider
continuous symmetries. For continuous symmetries, the changes in the fields
are specified by a continuous set of parameters. (We consider global sym-
metries for which the parameters are constants, i.e., independent of space-
time. Local symmetries for which the parameters can be spacetime depen-
dent will be discussed in Chapter 10 where we introduce gauge theories.) For
a continuous symmetry it is possible to consider infinitesimal transforma-
tions which are very close to the identity transformation. i.e., we can write
or — @l = or + eAc,ZaAT. e are the infinitesimal parameters of the trans-
formation; ¢4, is defined by the change in ¢,. Being a symmetry, we must

have
6L = 9,(e* KY) (3.74)

for some K.
Consider a general change ¢, — ¢, + §p,. We have

oL 0 oL 0 oL
=9 " Bun (am)}és"r o (8@%)5%) (8:75)

We define a current associated to a symmetry transformation by

oL

wo_
4= (Ouspr)

Gar — K (3.76)
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For a symmetry, using (3.74, 3.76), we can write (3.75) as

oL 0 0L

-~ _ < = A (/R
Dor 02t 0(0pp) d0pr + €°0,JY4 0 (3.77)

We see that J/ evaluated along the classical trajectories is conserved; i.e.,
9, JY = 0, if the fields obey the equations of motion. Notice that (3.76) defines
J' even for field configurations which do not obey the equations of motion.

We have obtained the result that for every continuous symmetry of the
theory, there is a current which is conserved by the time evolution of the
fields given by the equations of motion. This result is known as Noether’s
theorem.

Integrating 9, J!; = 0 over all space, we see that the charge

Qa= /d% J9 (3.78)

is preserved in time, i.e., % = 0. (This is true if the surface term f Ja-dS

at the spatial boundary is zero; otherwise, this surface integral tells us the
rate at which charge is flowing out of the volume under consideration.)
We now consider some examples illustrating this result.

1. Consider a complex scalar field ¢ with the Lagrangian
L =0,p"0"p—m>p*p (3.79)

The transformation ¢ — ¢’ = ey is evidently a symmetry, i.e., L(¢') =
L(p), for constant 6. Thus

dp = ibp, dp* = —ifp*, Kt=0 (3.80)
The current is given by
I = —i[p"(9"p) — (9"¢)¢] (3.81)

One can easily check that this current is conserved, using the equations of
motion. The charge is given by

Q= —i/d3x (p*m™ — ) (3.82)

m and 7 are the canonical momenta for ¢ and ¢* respectively. 0Q is the
generator of the symmetry transformation; i.e., for any operator F built up
of ¢, ¢* and the corresponding canonical momenta,

i6F = [F,0Q] (3.83)

2. Consider the Dirac theory with the Lagrangian



34 3 Canonical Quantization
L=1Y(iy-0—mhp (3.84)

The transformation 1) — ¢/ = e, 1) — ' = 1) is a symmetry with

L', 4" = L(1,%). The current is given by
T = iy (3.85)

The corresponding charge is

Q= /d% Py (3.86)

This charge is the fermion number charge we introduced in the last section
for Dirac particles. From the anticommutation rules for the fields

[’@[J(wvt)u HQ] = 9¢($,t), W(% t)v 6‘@] = —0 (3'87)

showing that AQ is the generator of the transformations ¢ — e~ %9, 1) —

€164

3.6 The energy-momentum tensor

Symmetries we have considered in the examples given above leave the La-
grangian unaltered. Generally, in the case of spacetime symmetries, the La-
grangian changes by a total divergence; there is a nonzero K;. The spacetime
symmetries of interest to us are translations and Lorentz transformations
which lead to the conservation of energy, momentum, and angular momen-
tum. Rather than use the formula for the current, we work out once again
the derivation of the conservation laws.

We consider the transformation z# — x* 4+ &, with &* = a* + Wz,
which corresponds to a constant translation by a* and an infinitesimal
Lorentz transformation with parameters w*”; the vector £&# obeys d,&" = 0.
The change in the fields is given by

Z. v
O, = 6“%% - 5“]# (SMU()O)T
)
§0upr = E10upr + 08" Opior — Ewaﬁ(saﬁ@)r (3.88)

Here S,,,, are the spin matrices, whose explicit form is given in Chapter 1 and
the appendix for spin—% and spin-1 cases. In (3.88), they are understood to
be in the representation to which the fields ¢, belong.

The Lagrangian is a scalar function of z*; the change in £ is thus given
by
oc

0L = g o = 0u(E"L) (3.89)
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The Lagrangian does not have explicit dependence on the coordinates; the
dependence on z* is through the fields and their derivatives. So we can also
write, as in equation (3.75),

oL
oL = &0, + 0, (5 T7> 3.90
v 7 0(0uer) (3:90)
oL o0 oL
br = oy Qv <6(8V‘PT)> (3:90)

Combining equations (3.88 - 3.91), we have

0 oL ) oL
" ) _evp 2,08 " | =_
oz |:(g 8,u80r 8(81/‘%77“)) &L 2(W Saﬁ@)r 8(81/‘%77“)] gr&pr
(3.92)

We see that the quantity in the square brackets on the left-hand side is
conserved for fields which obey the equations of motion, viz., when &, = 0.
The current for translations is given by

oL
tHU = 6MSDTW - nHVE (393)

(This is not quite the energy-momentum tensor, which is why we use the
lowercase letter.) There is some arbitrariness in defining ¢,,,, from the conser-
vation condition; one can add a term like 0%B,a., Where B4, is antisym-
metric in o and v, to ¢,,. This does not affect the conservation condition. A
specific choice for By, as a function of the fields and their derivatives will
be made below, motivated by symmetry properties.

The four-momentum of the system is given by

P, = / d*x tuo (3.94)

From equation (3.92), the current for Lorentz transformations, viz., the den-
sity for angular momentum, is defined by

LMo M0, = wh® [zatw — 1(Sua®)s (3.95)

oL }
6(8u‘/’7‘)
Since only the product of w”® and M is defined, there is some freedom in
the identification of the density M n.,. We now define

Baw = i oL oL oL ]

a S aP)lraa ——~ — S vP)rara N Sozl/(p TAara N

3 | ey~ S gy T S i,
(3.96)

Notice that B, is antisymmetric in o and v. The angular momentum den-

sity, consistent with (3.95), is defined as

M,uau = xat,ul/ - x,utal/ - (B,uau - Ba#y) (397)
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The energy-momentum tensor is now defined as
T,ul/ = t,uz/ + 8QB'LLO¢U (398)

From the antisymmetry of B, and the conservation of ¢,,, it follows that
T, is conserved. Further, the four-momentum can be written as

P, = / d*x Tpo (3.99)

since the term involving B gives a surface integral at spatial infinity, which
is zero for fields which vanish there or obey appropriate periodic boundary
conditions. We can also write the angular momentum density as

Muoa/ = ‘TOZTHV - quau - 6/8(:'[;(1-3“61/ - :I/.HBaBl/) (3100)

The angular momenta and boost generators are given by
MMOZ = /d3x Muao = /d3{IJ (xaTHO _quaO) (3101)

The divergence term in (3.100) leads to a surface integral at spatial infin-
ity and does not contribute in M,, for B’s which vanish sufficiently fast.
Therefore we may also define the angular momentum density as

Muoa/ = ‘TO(THV - quaV (3102)

From the conservation of the angular momentum density, it follows that
T, is a symmetric tensor, when the fields obey the equations of motion.
Our choice of B4, which is the ambiguity in defining the currents from the
conservation equation (3.92), is motivated by this symmetry property. The
tensor B, is sometimes referred to as the Belinfante tensor. In working out
the expression for the tensor 7}, from (3.98), one may encounter, depending
on the specific theory, terms which are proportional to &,. Classically such
terms are clearly irrelevant; quantum theoretically, one needs further physical
requirements to define such terms; these physical requirements are related to
the renormalization of the energy-momentum tensor.

3.7 The electromagnetic field

An example of a field with spin for which the above construction of the
symmetric energy-momentum tensor can be applied is the electromagnetic
field. The basic field variable is the electromagnetic vector potential A, (x).
The field strengths are given by the tensor F),, = 9,4, — 0, A,. The electric
field F; and the magnetic field B; are given by F; = Fy; and B; = %eiijjk.
The Lagrangian is given by
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L=-tpmvp, (3.103)
This gives
oL
— FO(V
(0, Aq)
tuw = —0uAaF,” + 0, F? (3.104)

The Belinfante tensor is given by
Buoa/ = _AuFoa/ (3105)
and the symmetric energy-momentum tensor is easily seen to be

Ty = —FuaF,* + 0w F? (3.106)

3.8 The energy-momentum tensor and general relativity

We have seen that the energy-momentum tensor 7}, is symmetric. For fields
with spin, this is achieved after the addition of the Belinfante term to ¢,,.
This term arises from the rotation of coordinate frames which are needed
for defining the components of a vector or tensor, or generally for the com-
ponents of any field with spin. General coordinate transformations, as en-
countered in the general theory of relativity, include these frame rotations,
and therefore we have another way to derive the energy-momentum tensor.
We first make the action invariant under general coordinate transformations
by including the metric tensor to carry out contractions of spacetime indices
and to make the integration measure invariant. In this expression, the frame
rotations are compensated by the change of the metric components. The
energy-momentum tensor can thus be obtained by varying the action with
respect to the metric components. Specifically, the formula is easily seen to
be

58S = % / V=g d*z Ty, 5g" (3.107)

In this expression, g = det(g,, ) and ¢"” is the inverse to g, i.e., ¢""gra =
0k Since the metric tensor g, is symmetric, the energy-momentum tensor so
derived is automatically symmetric and coincides with the symmetric energy-
momentum tensor obtained via the Belinfante addition. After identifying 7},,,
we may set gu, = 1 to obtain the result for flat spacetime. The derivation
of the equations of motion for gravity from an action principle involves the
variation of the action with respect to the metric. Thus the above formula is
also just what we expect from the fact that the energy-momentum tensor for
matter fields acts as the source for the gravitational field.

As an example, the action for the electromagnetic field is easily covari-
antized as
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S = —%/\/—_g d'r g"g"PF, Fop (3.108)
Using /=g = —2/=g g, 69", we find
T = —FuaFy + %9#VF2
— —Fu o Fo + imwlﬂ (3.109)

Similarly, for the scalar field we find

1 1
S = /\/—9 d'z [59“”8”@8,,@ - §m2s02 (3.110)
which leads to
1
Tuw = 000 p = 51w [(99)* — m*”] (3.111)

These expressions coincide with those which were derived previously in a
more tedious fashion.

3.9 Light-cone quantization of a scalar field

A simple example which illustrates the use of the symplectic structure
2;;(x,x') is the light-cone quantization of a scalar field. We consider a real
scalar field ¢ with a Lagrangian

£=10¢) ~ Uly) (3.112)

where U(p) = im2¢? 4+ V(p).
We now introduce light-cone coordinates, corresponding to a light-cone
in the (z,t)-direction as

u =

(z+1)

~5l-
[\

v \/5(2 t) (3.113)
Instead of considering evolution of the fields in time ¢, we can consider evo-
lution in one of the the light-cone coordinates, say, u. The other light-cone
coordinate v and the two coordinates 7 = z,y transverse to the light-cone
parametrize the equal-u hypersurfaces. Field configurations ¢(u,v,x,y) at
fixed values of u, i.e., real-valued functions of v, x, y, characterize the trajec-
tories. They form the phase space of the theory. The action can be written
as
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S=-— /du dv d®z" [9updup + 3(019)* + U(p)] (3.114)

A naive definition of the canonical momentum 7 as % gives T =
)

—0y, which is not independent of ¢(v,x'). Such a definition is therefore
not very useful. However, from the variation of the action S, we can identify
the canonical one-form 6 as

0= /dv d?2™ (=0, dyp) (3.115)

The symplectic two-form is thus given by
Qv zT v 2'T) = =2 0,6(v — v')6P (a7 — 2'T) (3.116)
We need the inverse of (2. Writing

3
S(v—") 6P (2T — 2Ty = / (;ZTP;?) exp (—ipu(v —v') — ip" - (a7 — 2'T))

(3.117)
we see that

N =

—~

dp 1
/ 27:))3 ZPTu exp(—ipy(v —v') —ipT - (2T — 2'T))
1

= _ZE(U — ") 6@ (2T — 2T (3.118)

Here (v —v') is the signature function, equal to 1 for v > 0 and equal to —1
for v < 0.

The phase space is thus given by field configurations ¢(v,z”) with the
Poisson brackets

{o(u,v,27), p(u, v, ')} = —ie(v —") 6@ (2T —2'T) (3.119)
The Hamiltonian for u-evolution is given by
H= /dv Pz [3(0rp)* + Uly)] (3.120)
The Hamiltonian equations of motion are easily checked using the Poisson
brackets (3.119).

Quantization is achieved by replacing ¢ by an operator ¢ with commuta-
tion rules given by ¢-times the Poisson bracket.

3.10 Conformal invariance of Maxwell equations

Translations and Lorentz transformations (or Poincaré transformations) are
not the only kind of spacetime symmetries possible. An example of another
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spacetime symmetry of interest is conformal symmetry. The free or sourceless
Maxwell equations are invariant under conformal transformations.

Lorentz transformations are of interest because they arise as isometries of
the Minkowski space. (We give a brief discussion of isometries and the Killing
equation in the appendix.) The change of the metric or distance function

ds® = g, dr"dz” (3.121)

under an infinitesimal transformation x# — x* + &* is given by

g o g
gy = gau% + Gua 8; + & 8?17‘; (3.122)

Setting this to zero, we get the Killing equation. For any given metric, the
solutions of the Killing equation give the isometries. For the Minkowski metric
which is constant, the Killing equation becomes

Bl + 0,6, =0 (3.123)

The most general solution, as noted in the appendix, is given by ¢, =
a, + wx”; ie., the general isometries for the Minkowski space are trans-
lations and Lorentz transformations (including rotations). This is why these
transformations are important for field theories on Minkowski spacetime.

Conformal transformations preserve the metric up to a scale factor; i.e.,
the change in the metric tensor is given by Ag,, where X is a scalar. In this
case, ds? — (1+ \)ds?. The propagation of light rays is given by ds? = 0 and
this condition is preserved by conformal transformations. For this and many
other reasons, conformal transformations are also important in physics. From
(3.122), we see that conformal transformations are given by

gaaaguu + gauauga + guozauga = )\gW (3124)

This is the conformal Killing equation. For the Minkowski metric this sim-
plifies to
8#51/ + 81/5# — )\77#1/ (3125)

The contraction of this with n*¥ gives A = %8#5“. The conformal Killing
equation becomes

8#51/ + 81/5# - %(8045&) Nuv = 0 (3126)

The most general solution is given by
€ = ay, + wr” + 0 (2?0, — 22,7,) + € 3y (3.127)

for constant a,, wuy, b”, €. The first two sets of parameters correspond to
translations and Lorentz transformations as before. The transformations cor-
responding to the parameters b” are called special conformal transformations
and the transformation corresponding to € is called a dilatation. The special
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conformal transformations may be understood as follows. Define an inverted
coordinate y* = (z#/2?%), x # 0. An infinitesimal translation of y# as given by
y* — y*+bH can be easily checked to be the special conformal transformation
when it is expressed in terms of x*.

Now consider the change of A, and F),, under a coordinate transformation
ot — xt + &P viz.,

0A, = EYFoy + 0, (Ank”™)
0F = £%0aF + For 0,8 + Fl00,£° (3.128)

The change in the Lagrangian (3.103) is given by

1 1
5L = Du(LE") = SFIFY 0,6y + 0y — 50+ s (3.129)

(0%
For a conformal transformation which obeys (3.126), we see that the change
in the Lagrangian is a total divergence. The equations of motion, which are
the sourceless Maxwell equations, therefore are invariant. In other words, the
sourceless Maxwell theory has conformal symmetry at the classical level.

The conserved current for these symmetries may be obtained using (3.75).
Since K* = L&, we find

oL . } )
<m5%> — KW =% [-F" Fo, — LOK] — F*0,(A-€)

— OTH _ FIYE,(A - €) (3.130)
Equation (3.75) becomes
9, [€°TH — F*9,(A-€)] ~ 0 (3.131)

where the sign ~ indicates that equality holds when the equations of motion
are used. Notice that 0,[F""0,(A-§)] = 0 by itself upon using the equations
of motion for F'*”, so that we have the conservation law

WlE T~ 0 (3.132)

The conserved currents for various transformations may be obtained by sub-
stituting (3.127) in £*TH and taking the coefficients of the parameters of the
transformations. For example, the dilatation current is given by

JH = g®TH (3.133)

The change 0,,(A - §) is in the form of a gauge transformation; it is not
a change in the physical field configurations and can be dropped from these
considerations. This is why the term F**9,(A - £) may be removed from
the expression for the current. It also follows from (3.107) and (3.108) that
T}/ =0, since 6§ =0 for gy — Agpw-
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4 Commutators and Propagators

4.1 Scalar field propagators

As a prelude to the discussion of interactions we calculate commutators and

propagators.
Consider the theory of the scalar field first. The field ¢(z) has the mode

expansion

$(x) =Y aru(r) + afuj(z) (4.1)
k

where

(4.2)

Up =

V2wV

(wr = VK> +m?2). The commutator [¢(x), ¢(y)] can be directly calculated
as

[B(2), o)) =D unlw)ui(y) — ui(z)ur(y)
k

:/(di 1 (e—ik(w—y)_eik(w—y))) (4.3)

27m)3 2wy,

in the limit V' — oco. We can rewrite this as

ol = [ o () e =) 4

c

where the contour is shown below.

A

\ 4

Fig 4.1. Contour for the commutator
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Equation (4.4) is to be interpreted as follows. We carry out the ko-integration
first, as a contour integral in the complex ky-plane, along the contour shown.
The contour encloses both the poles of function (k* — m?)~!, which are at
ko = twyi. Equation (4.4) then reproduces the expression in (4.3).

The commutator A(z,y) is a Lorentz-invariant function of the proper
distance (x — y)2. If 20 = y%, the commutator vanishes since the fields com-
mute at equal times. Since it is Lorentz invariant, it will thus vanish for all
points which are Lorentz transforms of (2%, ), (2°,9), i.e., for all spacelike
separations of the points x,y or equivalently for (z — y)? < 0.

[¢(x), ¢(y)] = 0, (z—y)*<0 (4.5)

¢ is a hermitian operator and qualifies as an observable. The fact that the
fields commute at spacelike separations tells us that it is possible to measure
¢ at two points with no uncertainties if the two points are spacelike separated.
This is a reflection of the fact that, as with any signals, the disturbances due
to the measurement process cannot travel faster than light.

Notice that if we use only the uy’s in defining a field operator, say, x(z) =
> aruk(z), then we do not have [x(z) + xT(x),i(x(y) — x'(y))] = 0 for
spacelike separation of x,y. Thus we cannot interpret arbitrary hermitian
combinations of y and x! as measurable quantities and be consistent with
relativity. This is another reason that ¢(z) = >, apur(x) + ajuj(x) is the
appropriate field operator in the relativistic theory.

Green’s functions for the Klein-Gordon operator will be important for the
discussion of interactions. We define them generically by

@+ m?) G(a,y) = —i6W(z —y) (4.6)

The solution can be written as

G(z,y) —/(3471;4 <m> e~ k(@) (4.7)

The choice of contour in dealing with the singularities at ky = +wy, will de-
termine the type of Green’s function we have. The contours for the advanced
and retarded functions are as shown below.

Consider the retarded contour Cr. For 2° > 4% we must complete the
contour in the lower half-plane so that the exponential eI/ mkol(2"=y°) will
guarantee that the large semicircle will not contribute. We thus get G(x,y) =

GR(Iay)v

3
Grla,y) = [ LE L (emite—y) _ gike—n) 20540
R\Z,Y (27T)3 2 ) Y

=0, ¥ <y®  (4.8)
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. Cr

Y

. Cp

> OA

Fig 4.2. Contours for retarded, advanced and Feynman propagators

In other words,
Gr(z,y) = 0(z” — y°)[6(2), d(y)] (4.9)

where 0(z° — y°) is the step function. A similar result, Ga(z,y) = 0(y° —
2%)A(y, z), can be obtained for the advanced Green’s function.
Another quantity of interest is the Feynman propagator. It is defined by

G(z,y) = (0T ¢(x)¢(y)|0) (4.10)
where time-ordering, denoted by T, is defined by
To(z)¢(y) = 0(z" — y°)d(2)d(y) +0(y" — 2°)p(y)d(z) (4.11)

The T-symbol orders the operators on which it acts and rearranges them
such that the operator with the latest time-argument is at the left, the one
with the next latest time-argument comes next, and so on , with the operator
with the earliest time-argument at the right. Using the expansion for ¢(z),
we find

G(,y) = [0 = y")ur(@)ui(y) + 0y — 2°)ur (y)uj(x)]
k

Bk 1 e o
— / (2n)? 2w, [9(3:0 —yN)e * @) 4g(y0 — 20)et( y)}
(4.12)

In terms of contour integrals, we can write

G(z,y) = / i i e~ kEY) (4.13)
’ (2m)* \ k2 — m? +ie

The contour is the real axis (and a suitable completion in the upper or lower
half-plane). € is a small positive number, with e — 0 eventually. It shifts the
poles as shown. The pole at ky = wy contributes for 2z > 3% the pole at
ko = —wy, contributes for y° > x0.

The propagator obeys the equation
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O+ m? —ie)G(z,y) = —id™@ (z — y) (4.14)

so that it is a Green’s function in the mathematical sense. G(z,y) is the
inverse of i(O0+ m? — ie).

The propagator can be interpreted as the amplitude for particle propa-
gation. To see this, let us define a function K (z,y) as follows. For 20 > ¢,
K(z,y) is the amplitude for the particle to propagate from y to @ in time
(2% —yY). For y° > 2, since 20 is the earlier time, the particle must propa-
gate from x to y; i.e., K(z,y) is the amplitude for this propagation. In terms
of z-diagonal states in quantum mechanics, we can write

K(z,y) = (z,2°y,y°), 2% > y°
= (y,9°|z,2°), y° > a° (4.15)

Thus

K(z,y) = 0(z® — ) (@le 7@ ]y) 1+ 0(3° — %) (yle T =) )
(4.16)

For the relativistic particle, H = +/p?+ m2. We can insert momentum
eigenstates |k) using the completeness relation (1.7) from Chapter 1, where
plk) = k|k) and (x|k) = exp(ik - ). The eigenvalues of H are wj;, and we can
evaluate the above expression to find K (z,y) = G(z,y).

The propagator can thus be interpreted as the function which, for 20 > ¢°
gives the amplitude for particle-propagation from y to z, and for y° > zV gives
the amplitude for particle-propagation from z to y. (As mentioned before,
we should use both wuy(z) and uj(z) to define the field ¢(z); this is the
only combination which is physical in the sense of having [¢(z), #(y)] = 0 for
spacelike separated x, y. Thus the definition of the propagator in terms of the
field ¢(x) will include both cases, 2 > y" and 2° < y°.) The interpretation
of the propagator given here generalizes to N-point Green’s functions, as we
shall see later.

The analyticity of the integrand in expression (4.13) tells us that it is
possible to deform the contour of integration for the propagator to lie along
the imaginary kg-axis. There is no crossing of poles of the integrand in this
deformation. We may thus write

Glz,y) = = ak k(L e H@—y) (4.17)
T et R '

Introducing ko = iks and 20 = iz?, this equation can be written as

G(z,y) = Gp(z, y)} (4.18)

ri=—ix0 yt=—iy0

d*k 1 ik
GE(x,y)_/W (m>e (@=y) (4.19)
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where we integrate over the real line for all k’s including k4 and k? = k- k +
k2, k(z—y) = k- (x—1y)+ks(x* —y*). The metric used in (4.19) is thus the
standard Euclidean one. The propagator can be considered as the analytic
continuation of the Euclidean Green’s function Gg(z,y) to imaginary values
of 2, y*. Gg(z,y) obeys the equation

(-Os +m?)Gp(z,y) = W (z —y) (4.20)

Thus Gg(x,y) is the inverse to the operator (—(g + m?).

The propagator we have defined describes the probability amplitude for
the propagation of a single particle. This is clearly a quantity of physical in-
terest, for if the particle undergoes interactions either with an external field
or with other particles during the course of its propagation from (y°,y) to
(20, ), this will affect the probability amplitude for the propagation. The
calculation of the propagator (0|7 (é(x)¢(y))|0), suitably generalized to in-
clude interactions will then capture the effect of the interactions. Scattering
amplitudes, for example, will be directly given by the propagator.

A generalization of the propagator to the many-particle case can be easily
made. The quantities of interest are the N-point functions defined by

G(w1, 72, -, oN) = (0T (p(z1)p(x2) - - - (2 N))[0) (4.21)

As an example, consider the 4-point function G(x1, z2, z3,24). In the limit of
29,29, 2 — oo and 2§ — —o0, we have one-particle in the far past and three
particles in the far future, corresponding to the process of a particle decaying
into three others. G(z1,x2,x3,z4), with these assignments of time-labels,
gives the probability amplitude for such a process. Likewise, in the limit of
29,29 — oo and 23,2 — —oo, we have two particles in the far past and two
particles in the far future, and the corresponding G(x1,x2,x3,x4) gives the
amplitude for two-particle scattering. Similarly, the N-point functions give
amplitudes for a variety of physical processes. It is clear that the N-point
functions are the quantities of interest.

A succinct way to describe all the N-point functions is to collect them
together into a generating functional Z[.J] defined by

1
Z[J] = Zﬁ/d4$1d4$2 "-d4£L'N G(,Tl,,fg,-",,TN)J(,Tl)J(JJg)"'J(LL'N)
I :

—(0|T [exp( / Jqﬁ)} 10) (4.22)

where J(z) is an arbitrary function of the spacetime coordinates z. J is not
an operator. It is often referred to as a source function. By expanding Z[J] in
powers of J we can easily recover all the N-point functions as the coefficients
of the expansion. Alternatively we may write

0 6o 9
- 5J(1171) 5J(IE2) 5J(IEN)

Z[J] (4.23)

G(J:l,fEQ,"',J;N)
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We now derive an equation obeyed by Z[J]. The basic ingredients for this
calculation will be the operator equations of motion and the canonical equal
time commutation rules. We start with the quantity

sZ[J] _
5J(z)

S [ H@0 ) T O o(2)6(n)0(ue) -+ oy )0
S

— (0|T(x)e] 7*|0) (4.24)

Consider applying [0, on this quantity. The space-derivatives go through
the time-ordering symbol and act on ¢(x). The time-derivatives can produce
extra terms. This can be seen as follows. From the definition of time-ordering,
we can write

M 03 tM—1 5 0,3
dy d°yJ dy d°yJ t1 5 033
Yy y¢eftM72 Yy y¢.'.efm0dydyJ¢¢

O[T o(@)e] 7%10) = (ole?on» (z)

20 t! t/
dy®d3yJo L dy d3yJe M=1 4y0d3yJe¢
’ ’ ! <
X eftl eftz - ~eftM |0)

= (0Tl By e ey
= (0]P(00,20)6(x) P(x". ~oc)0) (4.25)

where in the first equation we have divided the time interval into 2M in-
tervals, labeled by t;,t;. Eventually, M — oo, with the intervals shrinking

1y Uy
to zero, as in the usual definition of the integral. The second step isolates
the z°-dependence in the appropriate order. We have also made the notation

compact by defining

P(2°,4%) = Texp (/Z dz J(x)(b(a:)) (4.26)

0

This has the property
S P = [ 0160 w) P00
z
S PE) = PR [Ea a6 este)  a2)

Taking the time-derivative of (4.25) and using (4.27), we get

0

D soirat)el 410y = 0/P(eo, 2" 20 pa0, o))

o0z
-/ dByJ<x°,y><0|P<oo,x0>[¢><x>¢<x°,y>

o, y>¢<x>} P(a°, —o0)[0) (4.28)



4.1 Scalar field propagators 49

The equal time commutator [¢p(z", x), (%, y)] is the extra term we have;

this is zero by the canonical commutation rules and so we may write

0 0¢(x)

020 OxY

In a similar fashion, the second time-derivative becomes

0[Tg()e] 7210y = (0]P (00, 2°) 2 p(a0, —o0) o) (4.29)

0 O?p(x
(029)2 <0|T¢(x)ef J¢|O> = <0|P(007950) (aié)Q)P(aEO, —00)|0)
+/d3yJ(x0,y)<O|P(oo,x0)[q5( 07m),¢(1‘0,y)]
P(2°,—00)|0) (4.30)

The extra term [¢(z0, x), ¢(z°,y)] is —i6®) (z — y). Using this, we find

02 92 o (x
(020)2 <O|T¢(~’C)ef J¢|O> = (0| P (o0, z°) (5%)2)13(170’ —00)|0)
—iJ(@)o|Te 7?0
2 X
=(0|T [?af5>36f Jﬂ 0) — iJ(2)Z[J]
(4.31)
Using this equation we find
O + m2)§f—([£ = (0|T [(Dz +m?)é(x)e) Jﬂ —iJ(x)Z[J) (4.32)

So far we have used the canonical commutation rules to simplify the above
expression. The operator equation of motion (O+m?)¢ = 0 for the free scalar
field can now be used to obtain the equation
0Z[J]
2 .
i —— =—iJ(x)Z]J 4.33
(O +m?) 5 = i) 21] (433)
This is the equation of motion for Z[J]. All the N-point functions may be
obtained by solving this functional equation. The solution is actually quite
easy to write down; it is given by

Z[J] = N exp [% /d4xd4y J(x)G(x,y)J (y) (4.34)

where N is some quantity independent of J. The definition of Z[J] =
(0T exp( [ J¢)|0) shows that we must have Z[0] = 1. This fixes the normal-
ization factor N to be 1. Expression (4.34) is easily verified to be a solution
to (4.33) provided (O, +m?)G(z,y) = —id6™ (x —y). A priori, there are many
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Green’s functions G(x,y) which could be used here. However, from the solu-
tion (4.34), and using the definition of Z[J] expanded to quadratic order in
the J’s, we find that (0|T(¢(z)¢p(y)|0) = G(x,y). This identifies G(z,y) in
(4.34) as the Feynman propagator, or equivalently the boundary conditions
for inverting the operator (O0+ m?) have been specified.

The N-point functions G(x1,--,xn) can be written down explicitly by
using (4.23) and (4.34) as

G(‘Tlv T VTQW) = Z G(wll ) xiz)G(wis ) xi4) T G(‘Ti2nfl ) xiZn) (435)
P

where the sum is over all pairings of the coordinate labels x1, x2, -, x2y.

4.2 Propagator for fermions

The field operator for spin-% particles (fermions) is given by

b@) = 3 |5 [nr w4 B o)) (4.36)
pr p

1/_’(55) = Z \/ EmV [a;z,rﬂr(p)eim + bp,rﬁr(p)e_ipm] (4.37)
pr p

where the creation and annihilation operators obey anticommutation rules. In
the case of the scalar field, the time-ordered product T'[¢(x)d(y)] was defined
as ¢(x)d(y) for 2° > 0 and ¢(y)d(x) for y° > 29. We get the same expression
as 2 — y° from above or below, because the ¢’s commute at equal time. In
the case of fermions, we have anticommutation rules at equal times, and, in

order to get the same expression as 20 — 3° from either side, we must define
_ | v@)y), 2’ >0
T (x)Y(y) = {_w(y)w(lﬂ) yo > 20
For 1 and 1), we have similarly
oy~ | @)d(y), >y
T P(x)Y(y) = {—1/)@)7/1(50)7 yo > 20 (4.38)

The propagator is defined by
S(@,y) = (0T (x)¥(y)|0)
— m o_ ,0 — —ip(z—y)
; (EPV> {6‘(,@ Y )uspuspe

—0(y° — xo)vspﬁspeip(w_y)}
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_ 1 o_,0 . —ip(z—y)
—Zp:(wpv) [9(35 Y )(v-p+me

—0(y" —2%)(v - p— m)eip(w‘y)}
_ d’p 1 0 0 —ip(z—y)

0" — 2 (- p— m)eip(w—y)}

(4.39)
(as V — 00). We have used the properties
S, = (25
prep 2m
p,s
- _(rp=m)
spUsp — 4.40
Z VspUsp om ( )

p,s

The propagator (4.39) can be written as

S(x,y) = (0|7 (x)¥(y)|0)
_ / dp 4 ptm ey
(2m)% p2 — m? + ie
= (iv- 0+ m)G(z,y) (4.41)

We also have (0|74 (2)1(y)]0) = (0/T%(z)y(y)]0) = 0.
The fermion propagator (4.41) is easily seen to obey the equation

(iy -0 —m)S(z,y) = i6W (x — y) (4.42)

The propagator is thus the inverse of the operator (i - 9 — m).

4.3 Grassman variables and generating functional for
fermions

In defining multiparticle propagators for fermions, it is again useful to collect
them together into a generating functional. Recall that the important char-
acteristic of fermions is that they obey the exclusion principle; there cannot
be double occupancy of states. This is encoded in the anticommutation rules
obeyed by fermionic fields. The definition of time-ordering for fermionic oper-
ators, viz., (4.38) also reflects this. Appropriate source functions (the analogs
of J) for collecting together the multiparticle propagators and the functional
differentiation with respect to them is then provided by anticommuting c-
number functions or Grassman variables. A Grassman number 1 has the

property



52 4 Commutators and Propagators

n* =0, n#0 (4.43)

In other words, a Grassman number is nilpotent. One could, if desired, give
an explicit realization of 7 as
0 1
n'_'p (‘) ()) (4'44)

where p is a real number. When there are many Grassman variables, this
can lead to considerable notational complexity. Fortunately, for our purpose,
such explicit realizations will not be necessary; the algebraic structure is all
we need. We can describe a number of Grassman variables n;, i =1,2,.... N
by

nin; +nini =0 (4.45)

More generally, one can also consider Grassman-valued functions n(z). (x may
be thought of as a continuous version of the index i.) For Grassman-valued

functions, we have
n(@)n(y) +n(y)n(z) =0 (4.46)

The product of two Grassman numbers (or generally an even number of such
numbers) behaves like an ordinary ¢-number function or bosonic variable in
its commutation properties.

One can also define functions of a Grassman variable. These are defined
by a Taylor series expansion in the Grassman variable around zero. The series
is always finite for a finite number of Grassman variables since the square of
a Grassman variable is zero. For example, for functions of a single Grassman
variable we may write

f(@,m) = folz) +nfi(z) (4.47)

or if we have N variables n;, : =1,2,..., N,

fGen) = fole) + Z fiwm + 5 Z fiaoyminy +

Z Jivia..i 77117712 MNin (4'48)

Z112

Notice that fi,i,...s, must be antisymmetric under exchange of any two indices
since the product of the n’s which multiplies it has this property.

One can define differentiation of such functions by making a variation
of 7;, bringing the resulting 07, to, say, the left end by making use of the
antisymmetry property on the indices and then defining the coefficient of dn;
as the derivative. We find

of

6_771' +quzm2+ NG|

( ) Z f 112 cinTig--Thin (449)
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Differentiation has the property

o 0 o 0
__ 9 4.50
on; On; n; On; (4.50)

Functional differentiation can likewise be defined by a power series expansion
in n(z) and obeys the rule

o 8 9 @
on(z) on(y) — Inly) on(x)

The notion of Grassman numbers and variables may not be as intuitive
or as natural as our notion of real and complex numbers, owing to their
nilpotent nature. Nevertheless, the above rules for Grassman variables form
a consistent set of algebraic rules for doing calculations and this suffices for
the purpose we have in mind.

We now return to fermionic fields. The propagator for fermions is given
by S(z,y) = (0|T(x)¥(y)|0), which obeys (4.42). The many-body fermion
propagators can be discussed by introducing a generating functional

(4.51)

Zl,7] = (O[T exp ( [ 1/377) 0) (452)

where we have introduced Grassman-valued functions 7, 7 in a way analogous
to J for bosonic fields; namely, one can calculate the N-point functions for
fermions by differentiating Z[n, 7] an appropriate number of times and then
setting 7,7 to zero. The sources 7,7 are spinors and have to be Grassman-
valued. We take them to anticommute with ), as well. The advantage of
introducing such sources is that we can write

Ti(z) (@) (y)n(y) = n(z) (@) (y)n(y), ¥ >0
= Y(y)n(y)(x)y(z), Y0 > 20
(4.53)

Thus the combinations 7(x)y(z) and ¥(y)n(y) behave like bosonic operators
for time-ordering. The additional minus sign which was introduced for the
time-ordering of fermionic operators is taken account of by the Grassman-
valued sources. We can now write

0Z b
5y = (Ol o) (4:54)
Acting on this with the operator (i - 9 — m), we get
. . 0Z _ . . fﬁwﬂﬁn
(-0 = m)gats = OIT(iy-0 = mpu(ael *+¥70) +

in® / By (O|TRo(), ([T ) + Pn(w))] el ™70)
(4.55)
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The first term on the right-hand side vanishes by the Dirac equation for .
The commutator in the second term, which is an equal time commutator, can
be evaluated by the canonical anticommutation rules and gives 776 (z—7).
The above equation then simplifies to

07

y-0—m)— =in(x)Z 4.56
(170 = m) s = in) (4.56)

The solution to this equation is given by
Z[n, 7] = exp [/ d'wd'y 7(z)S(z, y)n(y) (4.57)

where we have chosen the normalization to agree with Z[0,0] = 1.
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5 Interactions and the S-matrix

5.1 A general formula for the S-matrix

In this chapter we begin the description of interacting field theories. The case
of the scalar field theory with an interaction of the form ¢* will be treated as
an example. The formalism is, of course, more general and is easily extended
to any polynomial interaction.

The Lagrangian for the theory we are considering is thus

L=1[00)?—-m?¢?] — Ao? (5.1)

Here )X is a constant; it is a measure of the strength of the interaction and is
referred to as the coupling constant. The equation of motion is given by

([ + m?)o(x) + 4N (z) = 0 (5.2)

In the quantum theory, ¢(z) is an operator on a Hilbert space and the above
equation is an operator equation of motion. In addition to the equation of
motion, we also have the canonical commutation rules

[p(z°, ), p(a°, y)] =0
(2%, @), (e, y)] = —i 6 (& —y) (5.3)
[7(2°, @), m(2°, y)] =0

where 7(2°, ) = dpp(2°, ). If the interaction term 4¢3 is set to zero, then
¢(x) is a free scalar field and one gets the standard many-particle description.
In this case, the commutation rules and the equation of motion show that
¢(x) can be written as ¢(x) = > apug(z) + aLuZ(x), where ag, az represent
annihilation and creation operators for the particles. Since the equation for
¢ is linear, the notion of what a single particle state is does not change with
time. In the case with an interaction term, the equation of motion is nonlinear
and we see that if we start with aL, then because of the nonlinear term, we can
get a® afa®, .. terms. Thus a state aL|O> can evolve into a23|0> for example.
This would describe the decay of a one-particle state into a three-particle
state. The evolution of a,iaﬂ()) into afa}|0) would describe the two-particle
scattering with the momenta as shown. All these processes will be generically
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referred to as scattering. The basic quantity of interest to us is the scattering
amplitude or the transition amplitude for such a process.

As we have discussed before, the amplitude for such processes can be
obtained from the N-point functions

Gz, 22, an) = (0T (p(z1)p(22) - - d(wn))[0) (5.4)

by taking the time labels to +oco in a way appropriate to the process of
interest. Therefore as a first step in calculating the scattering amplitudes,
we shall derive an equation for such functions in the interacting case. The
generating functional for the N-point functions was defined as

Z1J] = (0T exp [ / e J(x)¢(x)} 10) (5.5)

In the last chapter, we also obtained the equation (4.32),

(O + m? — ie) 8Z[J)

St = O (@4 Aol 10 —is@)21) 6.6

We have put in the ie explicitly to specify that the Green’s function to be
used is the Feynman propagator G(z,y). In the discussion for the free case,
the equation of motion was (O + m?)é(x) = 0 and this was used to simplify
the above equation. The only difference in the interacting case is that the
equation of motion is different. In fact, using (5.2), we get the equation for
the generating functional in the interacting case as

(. +m? — ie) 0ZJ) | o|T [4/\¢3(:1:)ef Jﬂ 0y = —iJ(x)Z[J]  (5.7)

5J(x)
Since

4] ]

Z17) = OIT [sa)o@)é()e] 7] o) (58)

we may write (5.7) as

3
@, + m? — ie) gf([ﬂ +a) < - Jiw)) 2] = —iJ@)ZlJ] (5.9)

In the free case the solution to this equation was given as

Zo[J] = exp B /d4:vd4y J(x)G(x,y)J(y)] (5.10)

The solution to (5.9) is then given by

Z[J] = N exp [—M/d% (5Jix))4

ZolJ] (5.11)




5.1 A general formula for the S-matrix 57

N is a normalization factor. The above solution is easily checked as follows.

52T y
(O, + m? — i€) ng] — Ne MO g L m? e

6Zo[J]
57 (@)

~

— Ne P JO1D" i 1(2) Zo10))
i f(é/éJ)4 (—iJ(aj))eM f(5/5J)4 Z[J]
— 4y (%)3 20) = iJ (&) Z|J]
(5.12)

where we have used the identity

oA f(5/5J)4(_Z'J($))ei>‘f<6/6J)4 =—iJ(z) — A[(/ 5/6.0)*, J(x)]

= —iJ(z) — 4\ (m)g (5.13)

The solution (5.11) can be brought to a more useful form by using the
following identity.

> —-a [%} F[J] (5.14)

F [51} Glelel "“’]

»=0

for functionals F, G which can be expanded in a power series. Here ¢ is also
an arbitrary function of the spacetime coordinates; it is not the field operator.
This identity can be checked as follows. We may write the left-hand side of
(5.14) as

KA J e _rli]all J e
F[&p]G[cp]e ] _F_&p_G[éJ}e
=0 =0
_ i i sta
=G 57 F [5@} e 1
L0V ] =0
_a|2] F[J] efJ*"]
0J
0] =0
=G i F[J] (5.15)
Ry '
Using (5.14), we can write (5.11) as
Z[J] :NG% fG(S(S eif)\gp4+f(]<p‘| (516)
©=0
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where we have used obvious abbreviations like
1)

/Géé_/d4xd4y Gly) 5; ) dp(y)

This expression can be further simplified by bringing the Jy-term to the left
end. We can do this by

I 00 _ 10 o 1nd fn 0
ef 7% exp [e_f‘hp(% /G&S)ef J“"]

eJ 7% exp l/Géé—i—[l/Gé&/Jgp]
/G55 /Jga /Jga
e 7% exp{ /G66+/JG6+ /JGJ] (5.17)

The solution (5.16) can now be written as

Z[J] = o3 JaGs [ef Jca}-[(p]]

=0

Flo] = N J Gosg=ix [ ¢ (5.18)

In arriving at (5.18) we have not used any perturbative approximation.
The form (5.18) is, however, well suited to a perturbative expansion, which
can be obtained by expanding the exponential exp(—iX [ ¢?) in powers of \.

The quantity exp(—iX [ ) is, of course, exp(iS;n¢ ), where Sjne = —\ [ ¢*
is the interaction part of the action. We can thus generalize the above for-
mulae to any polynomial type of interaction as follows.

Z1J] = o3 [IGT lef Jca}-M]

©=0
1

Fid = Nexp (5 [ G35) exp Simlel) (5.19)

The normalization factor N is fixed by requiring Z[0] = 1, which is equivalent
to

1 .
e2 fGadeZSi"f[“’]] =1 (5.20)
@=0

We now turn to the scattering amplitude. Consider first the part of Z[J]

given by ef TG [¢]. The contribution of this term to the N-point function
is obtained as
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G(x1, 2, ,zN) = /d4z1d4z2 cedian G(x1,21)G(x2,29) -
G(,TN,ZN) V(Zl,ZQ,...,ZN) (521)

) ) 1)
op(z1) dp(22)  dp(2n)

V(z1, 22y s 2N) = (5.22)

»=0

V(z1, 22, ..., zn) is often referred to as a vertex function.
Consider 29,29, ...,2% — —oc and 29, ..., 2%, — oco. If the vertex func-
tion does not extend to infinity, i.e., if it has compact support, we may then
take 29,29, ..., 2% < 20,28,...,20 and 20, ...,2% > 20, ..., 2%. The propa-
gators G(z, z) can then be replaced by their expressions for the appropriate

time-ordering. We then find

Glin,a,- - ) = /d4zld4z2..-d4zN S g, (21)uf, (1) (22)05, (22).-.
ki

Uk, (xn_kl)uzwl (zn41)-.- V(21, 22, .y 2n)  (5.23)

Along the lines of our general interpretation of the N-point functions as prob-
ability amplitudes, this has the interpretation as the probability amplitude
for the propagation of particles introduced at z1, zo, ..., Z, to be observed as
particles at 41, ...,xn. This is indeed the quantity of physical interest, but
it is expressed in a basis where the particle positions are specified. For most
scattering situations, we specify the momenta. The corresponding amplitude
can be obtained by projecting out the momentum eigenstates by appropriate
Fourier transformation using the orthonormality relation (1.3) from Chapter
1. The result is

S(kl,kg, ,kn — kn+1, ...,k‘N) = /d42’1d42’2 cee d4ZN Uy (Zl)qu (2’2)
UZnH(anLl)---UZN(ZN) V(z1,22, ..., 2N)
= /d421d422 coedban upy (21)ug, (22).

Uk, (Zng1) gy (28)

1) 1) 1)
X (o) So(m) el P

e=0
(5.24)

S(ki, ko, ..., kn — kni1,...,kn) is the amplitude for the scattering process
with the momenta indicated. It can be thought of as the matrix element

S(k17k27 7kn - kn+1a ey kN) = <kn+17 7kN|‘§|kla k27 7kn>

of an operator S which is appropriately called the scattering operator or
the S-operator. Equations (5.22,5.24) show that this matrix element is de-
termined by the functional F[p]; it is thus appropriate to refer to Fly] as
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the S-matrix functional. The functional differentiations in (5.24) show that
the S-matrix element is obtained by replacing the ¢’s in F[p] by the one-
particle wave functions, uy, for the incoming particles and uj, for the outgoing
particles.

So far we have not included the effect of the terms which arise from
exp(3 [ JGJ) in Z[J]. This can lead to terms in G(z1,22,---,2n) of the
form G(x1,x2)G(z3,...,xn) and similar product forms where a number of
free propagators are multiplied by a many-particle propagator with less than
N particles. From the factorization of the propagators in terms of u, uj, it
is clear that these correspond to processes where some of the particles do not
participate in the interaction but just fly by; they are propagators discon-
nected from the main part of the scattering process. Thus contributions from
exp(% J JGJ) describe subscattering processes and are not of great interest.
(The nontrivial scattering contribution in such terms is taken account of at
a lower order in J.)

Notice that from (5.21) we may write

V(zi,xe,...,zN) = Hi(l:lzj +m?)G(zy, 20, -, xN) (5.25)
J

where we have used the relation ([, + m?)G(z,y) = 6 (z — y). We may
thus write the scattering amplitude as

S(kl,kg, ,kn — kn+1, ...,kN) = H/ukj(x])z(DmJ +m2) X
j=17%

N
H UZT(xr)i(DLET + m2) G(l‘l, ...,LL‘N)

r=n+17Y

(5.26)

This result is often known as the reduction formula. (The operators i((l,; +
m?) cancel poles in the propagators and hence, in this formula, partial inte-
gration of the derivatives such that they act on the one-particle wave func-
tions is not justified. Alternatively, the wave functions may be taken to be
arbitrary, to be set to being solutions of the free wave equation only at the
end.)

By substituting J = i(d0+ m? — i€)p in equation (5.19) and doing some
partial integrations, we see that the S-matrix functional can be written as

Flo| = e 2 [ eOme zi0 1 m2)g) (5.27)

L.e., it is just Z[J] evaluated for the choice J = (004 m? — i€)yp, apart from
a trivial factor of exp(—% [ (O + m?)g).
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5.2 Wick’s theorem

We now want to do the perturbative expansion of the S-matrix functional.
In doing this, we encounter terms of the form exp( [ 2G66) ¢(1)¢(2) -+ o(N)
where (i) stands for ¢(z;).

Consider the action of one power of [ %Géé on the fields ¢.

3] D AR = 5

/G@J)a (2)

+/Gwa5£@wnl
) (5.28)

= G(1,2

The operator [ %G&S replaces the pair of fields by its propagator. This is
known as Wick contraction. When applied on ¢(1)¢(2) -+ o(N) we get

/%G&? e(1)p(2) - p(N) = ZG(i,j)w(l) (i = Dp(i+1) -

o(j = Dp(j+1)---p(N) (5.29)

Notice that we again get the sum of all pairings or Wick contractions on the
right-hand side, with one propagator only. There is no other numerical factor.
The G(i,7) term arises in two ways: when the first functional derivative acts
on ¢(i), the second on ¢(j), and when the first functional derivative acts on
¢(j) and the second on ¢(i). This removes the factor of 3.

Now consider the term quadratic in the G’s in the expansion of exp( [ %G&S).
We find

1

2 1G86 [ 1G85 o(1)p(2)¢(3)p(4) = G(1,2)G(3,4) + G(1,3)G(2,4)

+G(1,4)G(2,3) (5.30)

We again get the sum of all Wick contractions. The pair (1,2) can occur from
the action of the first [ %G&S or the second; this removes the % Applied on
e(1)p(2) -+ p(N), we get the sum of all terms with two Wick contractions
with no other numerical factors. Continuing in this way, we get the formula

Lass

e) 269 L(1)p(2) - p(N) = (1)e(2) - (W)
+ Z terms with 1 Wick contraction each
+ Z terms with 2 Wick contractions each

+ Z terms with 3 Wick contractions each
I (5.31)
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This result is known as Wick’s theorem. It gives a simple rule to carry
through the differentiations that we encounter in using the formula for F[p].
We shall refer to exp( [ $G30) as the Wick contraction operator.

5.3 Perturbative expansion of the S-matrix

We now consider the perturbative expansion of the S-matrix functional as
given by (5.18). This is easily done by expansion of the exponential in powers
of \.

1. Zeroth order in A
We get Z[J] = Zy|J] and there is no nontrivial scattering.
2. First order in A

For the first order term we get
N-LFED :e%IGéé(—i/\/cp4)
= —i/\/g04 —i6/\/<p(33)2G(33,x)
—i3)\/G(:17,x)G(a:,:1:) (5.32)

We shall analyze each of these terms separately. The first term leads to a
vertex function with four points and hence to processes with four external
particles. This can describe a decay process 1 — 3, a 2 — 2-scattering, or a
3 — 1 process. The amplitudes are easily written down by replacing the ¢’s
by the wave functions as in (5.24). For the 1 — 3 decay process, we have

S(k — p1,p2,p3) = (—iX)4! /d4x uk(a:)uzl (x)u;2 (x)u;% (x)

— (i (2m)'8™ (k — p1 — P2 — po)
- V (2wi V) (2w, V) (2w, V) (2wp, V)

(5.33)

We can represent this diagrammatically as shown below. This diagram, known
as a Feynman diagram, not only gives an intuitive picture of the process in-
volved, but it is also a mnemonic for the mathematical expression for the
scattering amplitude. We associate a factor of (1/v2wV) with each external
line; the vertex carries a factor of (—iA)4! and an energy-momentum con-
servation d-function (27)* 6™ (k — p; — po — p3). Formula (5.33) can then be
written down by taking the product of such factors. (Since all the parti-
cles involved have the same mass, this particular process is forbidden by
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energy conservation. The amplitude can be written down as in (5.33), but
the d-function has no support and vanishes. The same rules for associating
mathematical expressions with a diagram are general and apply to situations
for which the amplitude does not vanish.)

Fig 5.1. 1 — 3 decay process

For the 2 — 2 scattering process, we have

S(k1, ke — p1,p2) = (—iA)4! (2m)"0" (k1 + k> — p1 — p2)
) ) \/(2wk1 V) (2Wk2 V)(2wp1 V) (2wp2 V)

(5.34)

We can represent this diagrammatically as follows. This describes two-particle
scattering to the lowest order in the coupling constant .

Fig 5.3. Scalar self-energy or mass correction
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The term —i6AG(x,z)p(x)? can only lead to processes with two external
particles. It gives a correction to the propagation of a single particle and
contains information about corrections to the mass of the particle due to
its self-interactions. Representing the propagator G(x,y) as a line from z to
y, we can diagrammatically represent this term as shown in figure 5.3. The
proper treatment of this term requires ideas about renormalization and will
be postponed for now.

Fig 5.4. The first order vacuum process

The term —i3AG(z,2)G(z,x) can be diagrammatically represented as in
figure 5.4. It is a pure vacuum correction, i.e., changes (0|0); but, of course,
it is canceled by our choice of normalization N. In fact

N=1+ i3)\/d4x G(z,7)G(x, ) + O(\?) (5.35)

(There can be situations where the vacuum diagrams can be important
physically. If we consider field theory in the presence of external fields, vacuum
or ground state (which now includes the external field) can decay or undergo
other interesting changes. These can be described by the vacuum diagrams.
Likewise, for fields at finite temperature, the vacuum diagrams are important
temperature-dependent corrections to the partition function.)

2. Second order in \

The various terms of order A? are given by

1 —i\)?
N-LF@ — o3 [ GoI % /d4:z:d4y A (2)pt(y) (5.36)
This leads to many terms which are repetitions of first-order processes. Thus
we get terms which can be diagrammatically represented as
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A 7 A 7 N
\ ’ N v N s N e N
N 3 N\ z N 7 N N
N4 N4 N4 NI \
» » or ) » 1
7/ N\ 7/ N\ e N 7N\ !
’ \ ’ \ ’ N s N ;
7’ \ 7’ N ’ N 4 < -
’ N ’ N ’ N ’ ~--
7

or » ! /ﬁ I

Fig 5.6. Another disconnected diagram, repetition of first order processes

Genuinely new terms arise when there is a propagator G(z,y) connecting
points x and y. The simplest such term is

—i\)2
Sk 2!) 42/903(96)0(96,9)@3@) (5.37)
D1 :pQ D3
\\\f/{/
v
A
/*\
RN
kl k,2 ]{?3

Fig 5.7. A contribution to 3 — 3 scattering process

This term includes many processes, such as 3 — 3 scattering, 2 — 4
scattering, 1 — 5 decay, etc. As an example consider 3 — 3 scattering

ki, ko, k3 — p1,p2,ps. The amplitude is given by
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S(ki,pi) = (—iM)? / Uk, (T)uky (), (2)G (2, y)uy, (y) vy, (y)up, (y)
+ permutations
i (277)26(4)(21' ki —>2;pi)
o+ R 4 R~ m2 T ic [, y/2nVy/Zp,V

+ permutations

= (—iMd!)?

(5.38)

Diagrammatically this can be repesented as shown in figure 5.7. If we make a
rule of representing each internal line or propagator in momentum space by
(i/(k? — m? +ie)), then the mathematical expression can be written down at
once from the diagram. The conservation of four-momentum at each vertex
gives the correct momentum (in this case ky; + k2 + k3) to the propagator.
Various other processes contained in (5.37) can be treated similarly.

The terms with two propagators connecting x,y are contained in

(—iN)? (4 x 3)?
2 2

[ ety PP WG NGEY (6539
This can give the next order (O(\?) corrections) to 2 — 2 scattering, 1 — 3

decay, etc. For example, for the scattering k1, ks — p1, p2, we find

(—iXd!)?

: /[uh@m@@xmawG@wm;@w;@>

+ Uk, (x)u;‘n (JJ)G(J:, y)G(,T, y)ukz (y)u;2 (y)
+ u, (2)up, (2)G (2, )G (2, y)ur, (y)uy, ()| (5.40)

These terms are obtained by different assignment of momenta to the basic
process represented diagrammatically by figure 5.8.

Fig 5.8. O(\?) correction to 2 — 2 scattering

The factor of & in (5.40) follows from straightforward functional differenti-
ation, but it can also be understood as arising from the symmetry of the
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diagram under the exchange of the two propagators. Putting in G(x,y) and
integrating, the first of the terms in (5.40) becomes

(—’LA4')2 (271')45(4) (kl + kg —pP1— pg)
2 \/(2w/€1 V) (2w/€2 V) (2wpl V) (2wpz V)
x / (d4q ! ! (5.41)

2m)4 (k1 + ko + )2 —m?2 +ie ¢ —m? + ie

We find a new rule that we must integrate over the loop momentum ¢ with the
measure (d*q/(2m)?). This concludes our discussion of the basic diagrammatic
rules.

It is clear that the expansion of Fp] can be carried out to any order and
that at each order, the terms in F[y] describe a variety of processes.

5.4 Decay rates and cross sections

The S-matrix functional gives the amplitude for a process via (5.24). The
transition amplitude, we have seen, has the form

1
S = <H W) @m* WO k=Y p M (5.42)

where the product is over all external particles and M is an invariant matrix
element.

Decay Rate

Consider the decay of a particle of momentum k into n particles of mo-
menta p;. The S-matrix element has the form

IR - S 45(4) (1 _
S = ¢2ka1:[ NG @2m)*s@ (k=Y p) M (5.43)

The square of this amplitude gives the decay probability. The square of the
o-function is ambiguous. This problem arises because we have considered
infinite spacetime volume. We must interpret it as

/d4xei(z k=) p)z /d4yei(z B3Py — (271')45(4)(Zk - Zp)/d4y
=@2m)IS k=>"pVr
(5.44)

where 7 is the range of time-integration, taken finite for now; we shall take
T — oo eventually. The absolute square of (5.43), keeping in mind (5.44),
gives
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1 7 1
151 = 5077 I 5y @m0 Q k=3 pvr M (5.45)

The decay rate is thus given by

ISP 1 7 1 7)o ( 2
. M —2wV sW (k=Y "p) M| (5.46)

This is the decay rate into specified sharp values of the final momenta (of the
outgoing particles). In practice, we are interested in scattering into a small
range d>p1,d>ps, ... of each final momentum around mean values pi,pa, ....
This can be obtained by summing over all states with this range of momenta,
viz., (Vd®p;/(27)3 for each p;. Thus the decay rate into the specified ranges
of final mometa is given by

a? pz
dr IMI W (k= " p) H 2T (5.47)
The total decay rate is given by integration over all final momenta as

r= / ar (5.48)

The lifetime of the particle is given by 1/I". Notice that dI" and I" are in-
variant except for the factor (1/2wy). This factor gives them the correct
Lorentz-transformation property and gives the time-dilation effect for life-
times of fast-moving particles.

Cross sections

We now consider a 2 — n scattering process with momenta ki, ks —
P1,D2, ..., Pn. The amplitude has the form

1 L)
0\ (k1 + ko — 5.49
\/2u)k1 % \/2Wk2 H \/2(.() ( 1+ ke Z p ( )

Taking the absolute square using (5.44) as before, we get the rate for the
process as
S|P 1 1 & 1
T 2wi, 2w,V ; 2w;V

(@2m) '8 (ks + k= S p) M2 (5.50)

We must divide this by the flux to obtain the cross section. The flux can be
computed as follows. Consider the collision of two particles of masses mi, ms,
and momenta k1, ko. If one of the particles is at rest, say, k1 = (m1,0,0,0),
the flux due to the other particle is given by
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_ 1|k
Vw;w

(5.51)

since (|kz|/wk,) is the speed of the second particle and (1/V) is the density

of the particle for the plane waves we have. We can generalize this to any

frame as follows. Since k = w? — k1® = m?, k3 = w} — ks” = m3, the only

kinematic invariant is k; - ko. We have (kq - ko)? — m%zmg =mi(wi, —m3) =
2ky? if ky = (m1,0,0,0). Thus the generalization of (5.51), preserving the

necessary 1 < 2 symmetry, is

1 — m2m3

F= Vi 12 (5.52)
wklwk2

Dividing the rate (5.50) by this flux gives the cross section for scattering into

sharp values of the final momenta. For a range of momenta, of dispersion d®p;

around the p;, we get the differential cross section

(2m)* 0™ (k1 + k2 — Y- p) d’p;
=|M|? NGRS -1k2)22—m4 P H Qu}pi(];ﬁp (5.53)

where we have set m; = my = m, which is the case for us. Notice that do is
completely Lorentz invariant. Also factors of V' anf 7 have canceled out, so
we can take the limits V, 7 — oo.

5.5 Generalization to other fields

The generalization of the S-matrix functional to the case of many types of
fields in interaction is quite straightforward. Notice that the formula (5.19)
involves the propagator of free particles and the interaction part of the
Lagrangian. Thus, once we know the propagators and the interaction La-
grangian, we can immediately write down the expression for the S-matrix
functional.

As an example, consider a theory with two types of bosonic fields, denoted
by ¢ and &, of masses py and pg, respectively, and two types of fermionic
fields denoted by P and N with masses m; and ms, respectively. The various
propagators are then given by

Gi(z,y) = Glz,y, 1) = / (d4]§4 (kz L )e—ikw—y)

,u2+ze

Ie. -G d4k ) —ik(z—y)
2(.’[],y) - (LL' Y, /1'2) (271') k2 _'u +ie e

d* .
Si(z,y) = S(z,y,m1) z/ p 7 p+m1 e—ip(@—y)
4 p? —m + i€

d4p 7 p+m2
m + €

e~ p(z—y)

Sa(x,y) = S(x,y,ma) z/
(5.54)
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The S-matrix functional can then be written as

Flp, &, P,N] = N exp B/ﬁG(x,y,ul) 0 ]

(=2}

:| eismt[@,g,P,N]
(5.55)

where we have used the same symbols ¢,£, P, N to denote the (operator-
valued) fields and the corresponding ¢-number functions which appear in the
expression for the S-matrix functional.

The one-particle wave functions to be used in the calculation of the scat-
tering amplitudes are the scalar and spin—% wave functions given before, with
the appropriate masses.

Another interesting set of examples is given by the theory of nonrelativis-
tic particles which can be considered as the theory of the Schrodinger field.
The Lagrangian for the free theory is

oy

VQ
L=ifr +07 50 (5.56)

It is possible to quantize this field either using commutation rules giving the
theory of nonrelativistic bosons or anticommutation rules giving the theory
of nonrelativistic fermions. Consider the fermionic case as an example. The
anticommutation rules, obtained via the canonical one-form, are

{ v ), ¥(=°,y) } =0
{(@° 2), 92" y) } =0 (5.57)
{ w(‘rovw)va(xovy) } = 5(3)($ - y)

The one-particle wave functions are given by
e*’L‘EkIO%*iki-m (5.58)

ug(z) = W

where Ej, = k?/2m. The mode expansions for the fields are given by

Y(@) =) arur()
k

Pi(@) =) ajui() (5.59)
k
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where

{ar, i} = {a},af} =0
{ak, a} = ou (5.60)

The propagator is given by

d*k ) .0, 0_ 0y,
S — —ik” (z”—y" ) +ik-x 5.61
(z,y) / e W B i (5.61)

S(z,y) is the inverse to 9y — iV?/2m.
The S-matrix functional is given by

5
S (y)

where v, ¥* are Grassman-valued functions now.

The functional differentiations involved in evaluating the S-matrix func-
tional can be carried out by using the rule of Wick’s theorem given earlier.
Wick’s theorem for fermions works just as in the case of bosons with possible
extra signs from moving the Grassman variables around to bring them to the
correct order to be identified with the propagator. For example, for fermion

fields 1, 1),

eiSimtl¥ .97 (5.62)

ﬂﬂ=Nw%—/@%§@w

W p(1)(2) = ¥(1)¥(2) +5(1,2) (5.63)
where we have denoted by W the Wick contraction operator
4] 4]
exp {— / WS(I, y)m =W (5.64)

For the product of fields in the order v(2)1(1), we will get the propagator
—S(1,2). We may think of this as writing 1(2)1(1) = —(1)(2) first, so
that the fields are in the order in which they appear in the propagator and
then identifying the pair with the propagator. By extension we then find

Wi (1)1 (2)9(3)w(4) = p(1)p(2)P(3)1(4) — S(2,1)(3)1(4)
—¥(2)1(3)S(4,1) +p(1)p(4)5(2,3)
—(1)9(2)5(4,3)

S5(2,1)5(4,3) — 5(2,3)S(4,1) (5.65)

v
0

_|_

We see that we get all possible pairings with coefficients equal to +1 depend-
ing on the number of transpositions of the Grassman-valued fields. This kind
of rule extends easily to higher numbers of fields.
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5.6 Operator formula for the IN-point functions

We now obtain a formula for the N-point functions expressed in terms of an
operator expectation value. We start with the formulae (5.10, 5.11), which
give

Zo[J] =exp [3 [d*zdy J(z)G(x,y)J (y)]

Z[J] = Nexp l—i/\/d‘lx (%@)ﬂ Zo[J] (5.66)

Since Zp[J] is the generating functional for the N-point functions of a free
scalar field, we can write, using the definition (5.5),

2l = 0T exp | [ s )00 )] 0 (5.67)
where ¢, (x) is a free field. In other words, it has the expansion

din(T) = Z ayur(z) + aluj(x) (5.68)
k

(The operator ¢;,(x) is called the “in-field” because the incoming states
can be contructed in terms of its action on the vacuum state.) Using the
expression (5.67) for Zy[J] in (5.66), and doing the functional derivatives
inside the matrix element, we can write Z[.J] as

Z1J) = N{o|Tel 78m = [ o1 o)
— N(O|TeJ 79 iSim(0im) ) (5.69)

By functionally differentiating N times with respect to J and setting J to
zero we obtain

G122, o tn) = (O|T Gin (21) i (22)...01m (x5 )5t (Pin)|0) (5.70)

This gives the Green’s functions of the interacting theory in terms of free field
expectation values. Evidently a similar formula is obtained for more general
situations and more general interaction terms in the Lagrangian.

We can also write the scattering operator in terms of the in-fields ¢;,. In
the above formula, we have arbitrary Green’s functions expressed in terms of
¢in. We now take a set of time-labels 29,29, ..., 2% to —oco and 20, ...,z%

to +o00. In this limit, by virtue of the time-ordering, we can write (5.70) as

G(l‘l,,TQ, ceey LL‘N) = <0|T ¢zn(xn+l)¢m (,TN)T elSmt(djm)(bm(l‘l)(]5m($n)|0>

(5.71)
where we assume that the fields in the interaction term do not extend to £o0
in time. Since G(x1, 2, ..., xN) represents the scattering amplitude (albeit in
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terms of positions rather than momenta), we see that the scattering operator
is given by

S T elsznt(¢zn) )

U(z° =T exp [/ da® /d% Lint (¢in( ))] (5.72)

This is a very simple formula: the S-operator is given by the exponential of
the interaction part of the action with the free field operator ¢;, substituted
for the field ¢. The S-operator as defined by the above formula is unitary.
The operator U defined above obeys the properties

U(Iov yO)U(yov ZO) = U(‘Toa ZO)
UT(2,4°) = U1°, 2°) = U 1(2°,4°) (5.73)

for 20 > ¢y > 20.
One can also define, at this point, the interacting field operator ¢ by

6(2) = din (@) + / Gr(z.y) ply) (5.74)

where Gr(z,y) is the retarded Green’s function of (4.9) and p is defined to
be

~

5 08

The functional derivative with respect to ¢, is understood as follows. We
shift ¢;;, in S by a c-number (non-operator) function 0 f(x), i.e., ¢in — Gin +
0 f. The derivative is then the coefficient of § f in the variation of the operator.
In other words, the derivative is defined by

(5.75)

~ 58
55:/16¢T($)6f(a:) (5.76)

Since the retarded Green’s function obeys the equation (O0+ m?)Gg(z,y) =
—i6™ (z — ), we find that

@+ m*)é(z) = p(z) (5.77)

Conversely, (5.74) may be thought of as the solution of the above equation
with the retarded boundary conditions, which is appropriate if ¢ — ¢;;, as
20 — —oo. In principle, we can express p in terms of ¢ rather than ¢;,
by using (5.74). This will give an equation of motion expressed entirely in
terms of ¢. We shall now see that this agrees with the Heisenberg equation
of motion, so that ¢ as defined by (5.74) can be taken as the Heisenberg field

operator itself. First of all, a solution to ¢ as defined by (5.74) is given by
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$(x) = U(=00,2%)in(2)U (2", —00) (5.78)
We can check this by rewriting it as
6(x) = Gin() + U(=00,2%) [ 5n (), U (2", —o0)] (5.79)

Since U (2", —00) is defined in terms of the free field ¢;,,, the commutator can
be evaluated as

0

bn(e). U, =o0)] =i [ty U0 A ) (22} 10, o)
=i [ Gl ) 23 0, )

(5.80)

using Gg(z,y) = 0(z" — y°)A(z, y). Equation (5.79) can thus be written, by
combining U’s using (5.73), as

01) = due) +1 [ Gl )V (o0, U, —o0)
= Qin(x ) x 75Sim(¢)
— Gon(@) + /yGR( S (5.81)

where we have used (5.78) again in the last step. Now, from the definition of
U(a2°,9°) in (5.72), we see that

T o 08int (din)
p(I) = —iS 6¢zn(x) - U(—OO,I )MT

Comparison of this equation with (5.81) shows that (5.78) is indeed a solution
to (5.74). Further, from (5.74) and (5.78) we see that p can be expressed in
terms of the interacting field ¢ as

U(2?, —00) (5.82)

_ 5Sint (¢) (5.83)

5¢(x)
Consequently, (5.77) is the Heisenberg equation of motion for a field with
the action S = [ $[(0¢)? — m?¢?] + Sint(¢). In other words, ¢ as defined by
(5.74) can be identified with the operator ¢ we started with in this chapter.

Finally, notice that, since ¢;, is a free field, we can write the N-point
functions of this field as
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OIT Gun 1) gon (@2)-- fin(am)I0) = 5Jiv1) 5fo2) "'6J((;N)e% IJGJ]
J=0
S SRR cp(xl)go(xg)...cp(w]v)‘|
©=0
(5.84)

where we have used (5.67) and (5.16), with the interaction term set to zero.
Using this formula for the N-point functions of ¢;, and equation (5.19), we
find that we can write the S-matrix functional as

Flo] = N(OIT exp [iSint(¢in + ¢)] |0) (5.85)
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6 The Electromagnetic Field

6.1 Quantization and photons

The action for the electromagnetic field is given by
1
S:/—ZFMUFHV—AMJH:/%(E2—B2)_A0JO+A7;J7; (6.1)

where

Fu = 0,A, — 0,4,
Fy; = E;, Fij = €1 Bx (6.2)

A, is the four-vector potential. The equations of motion for this action, ob-
tained by varying the A, are the Maxwell equations

O F" = J¥ (6.3)
which can be written out in terms of the components as

0;E; = Jo (6.4)
OoE; + €x0; By, = J; (6.5)

Notice that, since 9,0, F*” = 0, for consistency, the current to which A,
couples, viz., J*, must be conserved. In other words

0, J" =0 (6.6)

In considering the quantization of this field, we must take account of two
related facts. Notice that if we have two vector potentials A, and A’H =
A, + 0,0 for some scalar function 6, the corresponding electric and magnetic
fields are unchanged, i.e., F,,(A) = F,,(A’). Thus we have a redundancy
of variables in using A, to describe the electromagnetic field. We will need
to eliminate the redundant degrees of freedom before we can apply the rules
of quantization. We also notice that equation (6.4) cannot be realized as a
Heisenberg equation of motion. Heisenberg equations of motion are of the
form 9yC = something, for an operator C. Equation (6.5) shows that the
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equation of motion for A; is second order in time-derivatives. Thus, E; =
OoA; — 0;Ap and A; form the set of phase-space variables at a fixed time.
Their initial values must be specified whereupon their time-evolution is given
by (6.5). In terms of such phase-space variables, (6.4) has no time-derivatives
and hence it cannot be obtained as a Heisenberg equation of motion.

The elimination of the redundant variables can be done as follows. First of
all, we can choose Ag = 0. For, if it is not zero, we use the physically equivalent
set A = Ao + 008, A, = A; + 0,0 and choose @ such that 9o = — Ay to get
Ajy = 0 and some nonzero A}, which we can rename as A;. We can then split
A; as

A=Al +o.f (6.7)

where AT is ‘transverse’; i.e., it obeys the condition ;A7 = 0. This leads to
the relation E; = 9p AT +0;(0o f). Equation (6.4) now tells us that 9;0;(do f) =
J(), or

dof = / iy Go(@ — y)Jo(a®,y)

2:0;Geo(x —y) = 6P (z —y) (6.8)
1 1
Ge(x—y) = Tirle—yl

Gco(x — y) is the Coulomb Green’s function. B;(A) = B;(A”T) since 9; f has
vanishing curl. The A;J;-term can be simplified as

/d% Apd; = /d%(AiTJi +0ifJ) = /d%(A?Ji — f0iJ;)
= /d‘lx(AiTJi — fOodo) = /d‘lx(AiTJi +00fJo)
= / d*z AT J;
+ /dwodgacdgy Jo(2%, 2)Ge(x — y)Jo(2°,y) (6.9)

Using equations (6.7) to (6.9) in the action (6.1), we find, upon partial inte-
grations,

1
S = /d4£[: 5 [80A;*F(90A;f - (9114?8114?]
+ / d*d'y %J(J(:c)Gc(w — )02 —y°)Jo(y) + / d'z A7 J;
(6.10)

We have included a J-function in the time-variables for the term involving
Jo’s to write the integration measure in a covariant form. We see that (6.10)
is equivalent to the action for two massless fields corresponding to the two
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transverse directions or polarizations of AT. (The combination of conditions,
Ag = 0 and V- A = 0, which our physical fields AT obey, is called the
radiation gauge.) In the absence of the current J#, the equation of motion
is

OAf =0 (6.11)
which is the same as (6.5). The general solution to this equation can be
written as

AT (@) =Y aaeMur(@) + afyeMug (@)
kX
up(z) = ————==e " (6.12)

where wy, = VK2 and kx in the exponent is, as usual, kgxg—k;x;. eEA), A=1,2
are unit vectors in the two independent directions transverse to k; (or 9;), so
as to be consistent with the condition ;A7 = 0. For most purposes, we do
not need an explicit form for these; one choice, if an explicit form is needed,

1S

1
W = = (ky, k.0
e 9 9
k§+k§( 2, —k1,0)
1
e® = (kyks, koks, —(k? 4+ k2)) (6.13)

VEE+K2VE K

) = ki/Vk - k, these form an orthonormal triad of unit vectors.

A kik;
Z el(- )€§ ) = (61']‘ — k;@) (614)

A=1,2

Along with 653

We also have

This can be seen as follows. The right-hand side must be a symmetric tensor
P;; with k;P;; =0, k;jP;; = 0 since k;e; = 0. Thus P;; must be proportional
to (0;; —kik;/k-k). The proportionality constant is seen to be 1 by evaluating
the trace.

In the quantum theory, the coefficients ayy, ab in (6.12) are operators.
The canonical commutation rules are obtained from (6.10) via the canonical
one-form. Equivalently, notice that the action is essentially that of two copies
of a scalar field (even though the transformation properties of the fields are
different) and hence the commutation rules can be easily seen to be

[ak,\ﬂk/,\/} =0
lalaafon] =0 (6.15)

[akm GL,,\,} = Ok Oax
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Since the free theory without currents mimics two scalar fields, the Hamilto-
nian for the free case is
H = Zwka};kam (616)
kX
As in the case of the scalar field, Lorentz invariance requires that we choose
an ordering of operators such that there is no zero point energy or vacuum
energy.

The vacuum state obeys agx|0) = 0. One can build up many-particle
states as we have done in detail for the scalar field. The particles in this case
are massless (since wy, = vk - k) and come in two polarizations orthogonal to
k. They are photons. a}; y is the creation operator for a photon of wavevector
or momentum k and polarization A.

The propagator can be obtained as

Dij(x,y) = (0T A (2)AF (y)|0)

d*k kik; i k)
—/@m(%‘zI>WH5 (6.17)

This is not manifestly covariant as it stands. If we start from an interaction
of the form A, J#, then the interaction part of the action, after elimination
of redundant variables, is

Sint = / d'zd'y %J(J(:v)Gc(w —y)6(z” —y°)Jo(y) + / d'z AT J; (6.18)

The S-matrix functional can be written down as

1)
™ _‘Xpl [ Putes 6AT<>6AT<>

The first term which involves a photon propagator is the term quadratic in
the currents. The quadratic terms are given by

etSint (6.19)

. 1
FO =i [dtadty Jaa()Go(@ - 936 - 1))

~ 5 [ dtad'y 1@ Dy ()50 (6.20)

The term involving the k;k;/k - k part of the propagator may be written as

J 7, kik; e~ th(z—y) 00z 0,7, e~ th(z—y)
/” i(#)J; () Lk k K2 +ic / ()/k k k2 +ic

| Do Jo ()P0 ) N
= [ wnwonn) | g
k2 e—ik(w—y)

_ 0
_/mujo(‘r)‘]o(y) kkk k2+'LE

) (6.21)
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where we have used the conservation of the current as in (6.6). Noting that
Gc(x —y) is the Fourier transform of —(1/k- k), we can combine (6.20,6.21)
to get

1 i )
F@ = 5/d‘lxd4y [Jo(x)Jo(y)/ ! e Hh(z—y)
k

k2 4 ie
(T i —ik(a—y)
WL [ e )]
1 174
-1 / dedy TP (@)D, y) I (3) (6.22)
d*k i e
Dy (z,y) _”“”/thriee Hey) (6.23)

Thus the propagator, when applied to conserved currents, can be taken as
the covariant propagator given by D, (z,y). (Even in this form, one has the
freedom of adding a term proportional to 0,0, to 1., since J* is conserved.
This will also correspond to the freedom of gauge choice; it is discussed in
more detail in Chapter 10.) The above result is exactly what we get if we
apply the covariant Wick contraction on a covariant interaction term, viz.,

@__1 _& 5 & / " / v
F 2., D“U(x’y)dA#(a:) A, () 2 A JR AT (6.24)
For all terms in the S-matrix functional involving photon propagators, a
similar simplification can be done. (We do not discuss this in detail here
because these issues become much simpler and clearer once the functional
integral is introduced.) For incoming and outgoing photons, we may still
write the covariant form of the interaction with the understanding that the
polarization vectors vanish for the time-components and are transverse to k
for the space components. The S-matrix functional may therefore be taken

as
_ 1 0 9 i [ At
F = exp( 5 /wu Dy (x,y) ) 6A,,(y)) e (6.25)

6.2 Interaction with charged particles

The coupling of the electromagnetic field to charged particles follows the
“minimal coupling” principle. This may be formulated as follows. We have
seen that in describing the electromagnetic field using the gauge potential 4,
there is redundancy of variables. Both A, and A], = A, + 0,0 describe the
same physical situation since the electric and magnetic fields are the same.
The change A, — A, + 0,0 is a gauge transformation and one can say that
the Maxwell equations are invariant with respect to gauge transformations.
This invariance principle is the key to electromagnetic interactions. Coupling
to charged fields must respect this invariance.
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Consider a complex scalar field; the free Lagrangian is
L = 0,00"¢* —m?pp* (6.26)

This theory has invariance under the transformation ¢ — e~*?%%, where 6 is
independent of z*. In other words, £(e~*??¢) = L(¢); we have already seen
that this leads to a conserved current; @) is the charge carried by a single
particle as given by this current. This symmetry is now made local; i.e., it
is extended to the case where 6 is considered to be a function of z*. Since
0, (e7R) = 7R, —iQD,0)¢, clearly the terms in Lagrangian (6.26)
with derivatives of the fields are not invariant. However, using A, we can
form the combination

Dy¢ = 0,9 +iQAu9 (6.27)
We then have
D, (A')¢' = e D,(A)¢ (6.28)
A, =A,+0,0
¢ =e 1% (6.29)

In other words, D, ¢ transforms homogeneously (or covariantly) even for lo-
cal z-dependent 0 if we combine the phase transformation of ¢ and the gauge
transformation of A,,. In fact, the phase transformation of ¢ can be identified
as the gauge transformation for the matter field ¢. D, ¢ is called the covari-
ant derivative. Since it transforms covariantly, we see that if we replace the
derivative d,¢ in the Lagrangian (6.26) by D, ¢, we get a Lagrangian which
has invariance under the gauge transformations (6.29) and has interactions
coupling ¢, ¢* to the electromagnetic field. This is the gauge principle, which
can be summarized as follows.

Charged fields have Lagrangians which have invariance under con-
stant phase transformations of the fields. This symmetry is made
local by replacing all derivatives in the Lagrangian by the covariant
derivatives. The resulting Lagrangian is gauge invariant and incorpo-
rates coupling to the electromagnetic field.

The application of this principle gives us, for the charged scalar field,
L = D,¢D"¢* — m>po*
= 0,00"¢" = m*$¢* + Lins
—iQAM (¢ — 00" ¢) + Q* AN A, dg* (6.30)

The S-matrix functional is then given by

1) 1)
F=exp U Clon ) 5oy 5 <x2>] .

exp (—% /zy DW(I’”%&A?(@/)) eint(6.31)

Eint
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We have used the covariant propagator for the photon, even though the use
of the covariant propagator was justified only for the coupling A, J* where
J# is a conserved current. The use of the covariant propagator is actually
correct. Rather than justify it at this stage, we shall simply assume it. The
correctness of (6.31) will emerge naturally once we have defined functional
integrals.

Some comments on the validity of the gauge principle are appropriate
here. It is valid for all fundamental charged particles. Indeed, it is the defin-
ing principle for electromagnetic interactions. (And a suitable generalization
gives other interactions as well.) It also applies to composite charged par-
ticles for the coupling of long-wavelength modes of A,, viz., those modes
whose wavelengths are large compared to the size of the composite particle.
For shorter-wavelength A,-modes coupling to composite particles, the effec-
tive interaction has to be derived from the details of the composite nature.
An example is the neutron, which has overall charge neutrality but does have
a magnetic moment. It has a coupling to the electromagnetic field given by
cNv, v NF* where N is the neutron field and the constant c is to be deter-
mined from the fact that the neutron is a bound state of three fundamental
quarks. Clearly this is not of the form of a minimal coupling. Another exam-
ple is the neutral m-meson which decays electromagnetically to two photons.
The interaction Lagrangian is effectively

e2

Lint = —+
T ur2f,

E-B¢ (6.32)

where f; is the so-called pion decay constant and ¢ represents the pion field.
This is again not of the minimal type. It can be derived from the fact that the
pion is made up of a quark and an antiquark which couple minimally to the
electromagnetic field. This will be derived later using anomaly considerations.

6.3 Quantum electrodynamics (QED)

Quantum electrodynamics usually refers to the theory of electrons, positrons,
and the electromagnetic field in interaction. Electrons and positrons can be
described by a Dirac spinor field with the Lagrangian

L=1(iy-0—m) (6.33)

The Lagrangian obviously has invariance under the constant phase transfor-
mation 1) — e**?1). The covariant derivative can be written as

Dytp = 8,1 — ieAuth (6.34)

This corresponds to Q = —e, which is appropriate for interpreting 1 as
corresponding to the annihilation of electrons of charge —e and creation of
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positrons of charge e. The gauge principle now gives for the interacting theory

L=P(iy-D—m)y
= Y(iv- 0 —m)p + ey A,
Lint = ey A, (6.35)
Notice that the interaction part of the Lagrangian has the form of A*J,.

The S-matrix functional for quantum electrodynamics (QED) may thus be
written as

F =exp <—%/x Duu(x’y)%%@)) .

emfi/ﬁﬁaﬁﬁﬁwwiw}”f“““ (6.36)

One can also write down the operator formula for the S-matrix for QED as

where the in-field A,, i, has the mode expansion given by (6.12) and propa-
gator given by (6.23). The fermion fields have the expansions

m —ipx 1pxT
Vin(@) = D\ [y [apr un(@)e™ + 0 o (p)e®]  (6.38)
pr P
_ m _ ipx _ —ipT
Yin(z) = Z ‘/E v [aL)TuT(p)ep + by, 0r(p)e” P } (6.39)
por P
and the propagator given by (4.41) as

[ d'p yep+m
S(I,y)=2/(2ﬁ)4p2_m2+iee p(@=y) (6.40)
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7 Examples of Scattering Processes

7.1 Photon-scalar charged particle scattering

Compton scattering, historically, refers to photon-electron scattering. We con-
sider here the same type of process, except that we have scalar charged par-
ticles instead of electrons. This may be referred to as scalar Compton scat-
tering. The S-matrix functional for charged particles coupled to photons is
given by

1/ ) 0 ) S

exp | —= Dz, y) ——— et

(-3 P S @) )

Lint = —ie A" (0*0up — 0" ) + 2 A* A, pp* (7.1)

To the lowest nontrivial order, viz., to second order in e, the relevant term
in F is given by

>

F=é [ 02 0) (¢ @0,6w ) +ie [ 40 (12)

where f0,9 = fO.g — 0,f g. Denoting the incoming and outgoing photon
momenta by k and k&’ respectively, and by p and p’ for the charged particle,
the amplitude, as given by the general formula (5.24) is seen to be

@2m)* oW (p+k—p — k)

A fr—
V2,\/2w2w'2E,2F,,
M 502201y ey — 2 =) B ) i)
B (p— k)2 —m2+ie

20 + k) - XK (2p+ k) - e (k)
_ R e (7.3)

Since p?—m? = 0, k% = 0, etc., we have (p—k')?—m? = p> —m2+ k"> —2p-k' =
—2p - K/, etc. Further since k - e (k) = 0, k" - e?) (k') = 0, we can simplify
the above expression to
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M = 2ie? [N . ) 4 (7.4)

where we use e, ) for e*(k), X (k). The cross section is especially simple
to evaluate in the rest frame of the incoming charged particle. In this case,
p = (m,0,0,0) and hence p- e = p. e = 0 since the polarizations do not
have time-components. We then find for the differential rate for scattering

into a range of final momenta

|"4|2 — 4@4 (27T)45(4) (p + k — pl - kl) (e()\) . e(k/))Q d3pl d3]€l

7.5
T 16ww' By, By V (2m)3 (27)3 (75)

The flux is given by F' = /(p - k)?/V Ey,w = 1/V. Thus the differential cross
section is
et en)isWp+k—p — k)

A) (Y
do = 4 ww'mE'’ (e( el ))

9 d3p/ d3k/
(2m)? (2m)?

(7.6)

Here E' = E,. The p/-integration is trivially done, identifying p’ as p’ =
p+k—K =k — K. Also define the scattering angle 6 by k - k' = ww’ cos#.
Then N o
e2 w’(e N.e N )2

do = <E> W(S(m—i-w—w/—E’)dw/dQ (7.7)
The remaining integral can also be done easily. The argument of the -
function depends on w’ directly and through E' = \/p’2 + m2? = \/(k — k/)2 + m2 =
Vw2 4+ w2 — 2ww’ cos @ + m2. Thus,

dw +FE) FE +w —wcosf

dw’ E’ (78)
Carrying out the w’-integration, we then get
2 N . (V)2
o= LW (e (7.9)

m w (E' +w — wcosf)

where o = €2 /4 is the fine structure constant and ' is given by m + w =
E’+w'. We may write this as (m+w—w')? = E"? = w? +w"? —2ww’ cos §+m?
or ,

w m

— = 7.10

w  m+w(l—-cosh) (7.10)

From this result, we also find that £’ + v’ — wcosf = m(w/w’). Thus

I\ 2
do = > (ﬁ> (€™ eM)2q0 (7.11)

m2 \w

This is the cross section for specific polarizations of the incoming and outgo-
ing photons. If we are considering an initially unpolarized beam of photons,
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we should average over the initial polarizations. Likewise, if the final polar-
izations are not measured separately, but only the cross section for all final
polarizations is considered, we must sum over all final polarizations. In this

case
do 1 do
<@)l -2 2 (%)
o W\ 2
= — (—) (1 + cos?6) (7.12)
w
where we have used the result

> edk)ey (k) = (517- - kkljﬂ ) (7.13)

A

and a similar result for the final polarizations.
For the total cross section, we integrate over all angles to get

o [ 4 4 2(1+=x)
2

1122 + PO log(1 + 21‘):| (7.14)

m
where = w/m. For small z, we can expand the logarithm to obtain

8o

o~
3m2

(7.15)

which agrees with the classical Thomson scattering cross section. For w > m

or large =z,

2ra?
o~

— (7.16)

7.2 Electron scattering in an external Coulomb field

This is also known as Mott scattering. The interaction Lagrangian for elec-
trons in an external electromagnetic field is given by

Lint = epy" AT (7.17)

The S-matrix functional is given by

0 ) e [ ACTt by
F =exp [—/—S (x,y)—— oo J 4oy (7.18)
6r () " 6s(y)
For one incoming electron of momentum p and spin state o and one outgoing
electron of momentum p’ and spin state 3, the amplitude is given, to lowest
order in the coupling e, as
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A =ie / de AT (z)e~ =P (7.19)

L P
VVEE P
Consider an external screened Coulomb potential

AO = ﬁ6_(”, Ai =0 (720)

r

We consider the screened potential to avoid difficulties of integration in (7.19).
At the end, we can take the limit a — 0. Using

. Je dnZe
3,.. —iq-x —ar __
/d e (7.21)

we find, in the limit a — 0

m 4nle

A= z‘eﬁq—2uﬁp,7°uw2w5(1§ - E) (7.22)
where ¢ = p — p’. Squaring and using the trick of replacing one factor of the

o-function by the total time 7, we get

Al? AnZe®)? m?
| | :( ) E2V2|Uﬁp”70uap|22775(E_E/) (7'23)

T q*

Since the source of the potential is at rest, the flux is given by F' = |p|/EV.
We then get for the cross section

2 EV d3 /
do = ACEVy, &0
T |pl (27)
4(262)2m2 0 2 INA2 71
= A A Uy |28(E — E'p2dp'd 2 7.24
q4E|p| | Bp P| ( ) ( )
We must have |p| = |p’| because of the §(E— E’). Further E'dE’ = p'dp’ from
E' = \/p’? + m2. Keeping these in mind, the integration over the magnitude
of p’ can be done trivially because of the d-function and gives
do  A(Ze*)*m? 5
- g
L (Ze)?m?
 4fp|*sin(0/2)

i
—B 0, a2 795
|yt | (7.25)

where we have used ¢> = p-p+p’-p'—2p-p’ = 2p-p(1—cos ) = 4|p|*sin(6/2).
The angle 6 between the incoming direction and the outgoing direction for
the electron is called the scattering angle.

The above result is for specific choices of initial spin (polarized incoming
beam) and specific spin values for the scattered electrons. If we have an
unpolarized beam and if there is no experimental discrimination of final spin
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values, we must average over initial spins and sum over all final spins. This
involves the quantity

% 2 2 1 el :% > D sy uaptiop usy

a=1,2 [=1,2 a=1,2 [=1,2

1
= 3 Z Tr [uapﬂap’youﬁp/ﬁgp/”yo]

.8
1

=g [(m+y ) (m+7-p' )]
1

=2 [4m2 + 4Py, (Mu0 "0 — NuwMoo + ﬁuonuo)]
1

= 53 B2+ m* +p-p]

E2
=— [1—v?sin®(0/2)] (7.26)

where v = |p|/E is the velocity of the incoming electron. Using this calcula-
tion, we find for the unpolarized cross section
do (Ze?)? 9 . 9
12~ 15t (0)2) (1 —v*sin?(0/2)) (7.27)
For v < 1 this gives the classical Rutherford scattering cross section. The
term [1 — v? sin?(0/2)] arises because of the spin of the electron. (In the rest
frame of the electron, the source is moving. The electron thus feels a magnetic
field with which the spin can interact.)
The cross section diverges at # = 0. This is related to the infinite range
of the Coulomb potential as seen from (7.21). This divergence can be consis-
tently eliminated by including the finite angular resolution of the detector.

7.3 Slow neutron scattering from a medium

Scattering of neutrons from crystals and liquids is a useful technique for
studying the properties of such materials. This is a problem which can be
discussed using standard many-particle quantum mechanics, but it is inter-
esting to apply field theory to it. The interaction between the neutron and
the nuclei can be represented by

Lint = ANNPP (7.28)

where P represents the nucleus which may be bound in a crystal, for example.
The S-matrix element is obtained by replacing the c-number fields in the S-
matrix functional by the wave functions of the particles. So far we have used
free wave functions for the incoming and outgoing particles. But in the present
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case, the wave function for the nucleus is not free; in the case of scattering
from a crystal, the nucleus or the positive ion is bound to the crystal and
the wave function must be the corresponding one. Denoting this by ¥ (), we
find for the amplitude, to lowest order in A,

A= % / e "W ()W (x) (7.29)

where ¢ = k—k', k, k' are the incoming and outgoing momenta of the neutron
and the subscripts 4, f on the ¥’s refer to the initial and final states for the
nucleus. We have used nonrelativistic wave functions for the neutron.

Consider first the case of a crystal lattice. In this case, the wave function
of the nucleus corresponds to an oscillating ion at a lattice site. Denoting the
position of the lattice point by a, we have

U(x) = e_iEI()@/J(:B —ay) (7.30)
FE is the energy of the state of the crystal. Using this, we can write
/d333 T W ()W (x)
_ ei(EffEi)zO /d% 1/1}(35 _ an)¢i(m _ an)eiq-(ﬂc*an)eiqﬂn
= /(Br= B2 fleiaén i) eia-an (7.31)
£, is the position operator for the particle (ion) at the lattice site a,,. Since

the neutron can scatter from any one of the ions at the various lattice points,
we have, for the total amplitude

A= %%5(% +E; — Ey) Z (fle'TEnli)eiran (7.32)

n

The incoming flux is k/mV, and so the cross section becomes

do = 2T S 0 (ay + B — Bp){ilem 6 1) (fleiaa fiein an-am) LE
ko ) (27)3
(7.33)

The final state of the crystal is seldom discriminated in any scattering, so the
quantity of interest is the cross section for scattering into all final states of
the crystal; we should sum over all final states. We have

> 2m0(qo + Ei — Ey){ile™ 08 |f){f[e'T ¢ i)
!

_ Z/dzoe_i(QO"t‘Ei—Ef)Zo <i|e‘iq'5m|f><f|eiq'5"|i>
f
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= [aveit S e an e o e 0y
f

_ / 40 1902" (j|e=i9°6m () 0 6, () |5 (7.34)

where we have used the completeness relation >, |f)(f[ = 1 and £,(2% =
e'H Zoﬁne_iH =’ denotes the Heisenberg time-dependent version of the position
operator at the indicated site. Finally, the initial state is seldom prepared to
be in any fixed pure state. Rather, one has thermal excitations of the lattice
vibrations. This can be taken care of by summing over all initial states with
a probability ¢; for state |¢) or equivalently by taking the average with a

density matrix p =", ¢;|i)(i|]. Using (7.34) and averaging, we get

2 37./
do — /\Tm / 02002 Ty [pe—iq»sm<o>eiq-sn<z°>} eiq»<an—am>%
nm

(7.35)

The summation over the lattice sites with the factor ’4'(@»=am) Jeads to sharp

peaks at values of the momentum transfer corresponding to the reciprocal

lattice vectors. At these values of momentum transfer, the factors ¢/ (an—am)

are all equal to 1 and we have complete constructive interference. The factor

Tr [pe*iq'ﬁm(o)eiq'gn(zo)} suppresses the peaks somewhat and gives the so-

called Debye-Waller factor. It also, due to the time-dependence, contains

information about processes where phonons are absorbed and emitted during

the scattering. Further simplification of (7.35) will depend on the specific
context.

Consider now another medium, say, a liquid or gas. Notice that we can

write

U ()% (x) = (fIPP(x)|i) (7.36)

which follows from writing out the operator P in terms of a mode expansion
with ¥’s as the one-particle wave functions. PP is the density operator for
the nuclei which we will denote by Jo(x). (It is after all the time-component
of a number density current.) We then find

2 _ N ity el :
AP = 37 [ dady e (@ Jo()IF) {f1To()]E) (7.37)

Summation over final states gives the quantity (i|Jo(y)Jo(x)|i). We can sim-
plify this as follows.

(i|Jo(y) Jo(@)|i) = (i]e'T¥ Jo(0)e " P¥=2) Jo(0)e i)

(i Jo (0)e™==¥) Jy (0)e e (=) j)

(i Jo (0)e P ==¥) Jo (0)e ~F(==9) 1)

(i Jo(0) Jo(z — y)|i) (7.38)
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where we have used the energy-momentum operator P = (H, P) to trans-
late the arguments of the Jy’s to the indicated points. (This P is not to
be confused with the field operator for the nucleus.) p; is the eigenvalue of
energy-momentum for the initial state |i). Using this result and changing
variables from z,y to x — y, y we can do the integration over y in (7.37). The
cross section can thus be written as

A2m 3K
do = TS(Q) e (7.39)
S(q) = / d*x e (i|Jo(0) Jo(x)]d) (7.40)

S(q) is the two-point function for the density operator. We see that it can be
measured by neutron scattering.

In some situations, such as slow neutron scattering which is essentially
elastic, it is a good approximation to take Jy to be independent of time. In
this case

S(q) = 2md(ko — k4)S(q)
S(q) = /d% e (3| Jo(0) Jo(z)]7) (7.41)

S(q) is called the structure factor.

7.4 Compton scattering

We now consider Compton scattering with spin—% charged particles, for ex-
ample, the scattering of photons by electrons or positrons. It is described
by the QED S-matrix as given in (6.36). The relevant term of the S-matrix
functional is

_ _ g O | ie [ Auirry
F = exp [ /5¢r($) Srs(x,y)&/js(y) e

— (ie)? / DS (o, g1 () Au(2) Ay (9) (7.42)

Upon replacing the 1,1 and the A’s by the one-particle wave functions ac-
cording to (a generalization of the) formula (5.24) we get the amplitude for
the process as

m2
= 2m) W (p+k—p — kK
A \/EVE’V2wV2w’V (@) p+k—p' = k) M
Lol / 1
M= —ie? gy )y P
. ) 1 ()
+ Ugpy - e ————————7 - " uqy (7.43)

v-(p—FK)—m
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where we have denoted the incoming and outgoing electron momenta by p, p’,
respectively, and the corresponding photon momenta by &, k’. Subscripts «, 8
on the spinors refer to the spins of the incoming and outgoing electrons and
e, e refer to the corresponding photon polarizations. The kinematics of
the process remain as in the discussion of photon scattering with a scalar
charged particle. If we consider the rest frame of the initial electron, then the
flux is 1/V and we get

I\ 2
do = — (%) IM|2d02 (7.44)

where, as before,

YT mT w(1 — cos ) (7.45)

There is no significant difference with the scalar case until this point, except
of course that M is different.

The cross section (7.44) applies to fixed incoming polarizations for the
photon and electron and for scattering into specified final polarizations. For
unpolarized incoming electrons and where final polarizations are not mea-
sured, the quantity of interest is the above expression averaged over initial
spins of the electron and summed over final spins. The result can be written
as

/\ 2 1
do = o? (%) 3 ; N |2de (7.46)
N = Ugp O?Vuapeﬁ,)el(}) + Ugy Ogyuapeﬁ)el(,x)
1
or = w”y (p+k) - m!
1
N T

The square of N will involve four types of terms. In general, when we square
a term like ugOu, we get

Z ﬁﬁp/ouapulpowouﬁp' = Z gy OlaplapOugy
a,B af
. . /

2m 2m

where we have used the fact that 7°0Ty% = O for the combinations of -
matrices we have, which follows from the fact that 7* are antihermitian and
anticommute with v° which is also hermitian. We thus get

am? Y IV = Tr [eu') L0y eV m Aty -p)e® -0 e (m 4~ p)
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LTy [em Oy X m 4y p)e®) - Oy - e (m 4+ .p/)]
LTy [eu') 01 eV (m 4y p)e®) - Oy - eV (m + .p/)]

Ty [em Oy N (m 4y p)e® - 0p X (m 4~ - )

(7.48)
For the traces of the y-matrices, we have the formulae
Tr[y#4"] = 4n”
Tr[y"y v y%] = 4 (0P — nton?P 4+ nPnre)
Trh/ul ,.Yuz .. ,,Yuzn] — anMQ Tr[,-YMS,YLM . ,-YNQn]
— n#1#3Tr[,.Y#2,Y#4 . ,.Y,uzn]
+ 77#1#4%[,7#27#4,7#5 .. ,7#271] . (7'49)

These rules follow from the basic Clifford algebra relations v#~" + y¥~y* =
2n*" . The last result is a recursion rule which can be used for higher numbers
of y-matrices to reduce such traces to lower ones. Using these rules, the
relevant traces in (7.48) can be evaluated, although this is rather tedious.
The result, in the rest frame of the incoming electron, with p = (m,0,0,0),
becomes

1 [Jo  w /
2_ - |¥ ¥ M) e(W)y2 _
SOIVE = 5 [w + 5 AN ™) 2] (7.50)
The differential scattering cross section (7.46) can now be written as
do o (N[ w /
— == 2o 4N N2 9 751
a2 4m? (w) {w—i—w’—i_ (e -e) (7.51)

This is the Klein-Nishina formula. In the nonrelativistic limit or when the
photon energy is small, we have w’ ~ w, and this reduces to the Thomson
cross section p )

o Q@ /
0~ W(e()‘) - e))? (7.52)
The expression (7.51) applies to the case where the electrons are unpo-
larized, but the photons are polarized. We can get the cross section for all
final polarizations of the photon and for unpolarized incoming photons by
summing over final polarizations and averaging over the initial polarizations.
The use of (7.13) then gives

1 / 1
3 Z(e(’\) ()2 = 5(1 + cos? 0)

1 w o w
— —+— =2
2Z{w+w’ }

Using this in (7.51), we find for the unpolarized cross section

2 [% += - 2} (7.53)
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do a? (W\’[w w 9
— == — + — —sin“ 6 7.54
d  2m? (w) [w +w’ S ] ( )
Integration over all angles gives the total cross section. In the nonrela-
tivistic limit, it is the Thomson total cross section.

87 a?
U((AJ) X OTh = ?W (755)
More generally one has
o(w) = orp Flw/m) (7.56)
where
Fw/m)—1 as -0

. ?é_’;"‘ log (2w /m) + % L0 (%ﬂ as g ~ o
(7.57)

The result that the cross section agrees with the Thomson cross section
when the photon energy is low is the same as what we found for the scalar
particle. Our calculation is only at the lowest nontrivial order in the coupling
constant e and only for spins-0 and —%. This reduction to Thomson cross
section is, however, universal. Based on the gauge invariance of the electro-
magnetic interactions, one can prove the following low-energy theorem. The
exact cross section for Compton scattering reduces to the Thomson cross
section as the photon energy w goes to zero. Of course, we have (Q?/4r),
instead of «, for a particle of charge @ in the formula for the cross section.
This theorem is very general and holds even after including renormalization
effects and contributions from other hadronic intermediate states and so on.
It can be used to define what is meant by the charge of the particle, viz., we
can say that the charge @ of a particle is defined by the formula

(i?_:)z _ S%ng(w)] y (7.58)

where o(w) is the Compton scattering cross section. (For a related low-energy
theorem, see Chapter 11.)

7.5 Decay of the 7° meson
The 7% meson (or the neutral pion) is a neutral particle made of a quark

and an antiquark. It decays into two photons. The interaction Lagrangian
responsible for this decay can be shown to be
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@
Lint = 7TfE - B¢ (7.59)
where ¢ is the pion field. « is the fine structure constant, and f = f; =~
93MeV is the pion decay constant, which can be measured in the leptonic
decays of the charged pions. The interaction (7.59) will be derived in the
discussion of anomalies later.
We consider incoming pion momentum p and outgoing photons of mo-
menta ki, ko and polarizations e, ™). The amplitude is obtained by re-
placing the fields by the one-particle wave functions in e*int, We find

(2m)*0™ (p — k1 — ko)
 V2pV2wi V2wV

M= fem(sz — kaiwr )M e (7.60)

The decay rate is given by |A|?/7, where we use the usual trick of replacing
the square of the delta function by one delta function and a factor of V7. As
regards final states, there is an additional factor of 2. This can be seen as
follows. The final state has two photons, which are identical bosonic particles.
The state ((k1,€e), (k2,€’)) is not distinguishable from ((kz2,¢e’), (k1,e)). In
summing over final states, if we do an unrestricted sum over momenta and
polarizations, there would be double counting. We can remove this by dividing
by 2. Thus the total decay rate is given by

final
Bk dPky (27)46W (p—ky — )
7.61
/(2#) 3 (2m)3 16powiwe §|M| (7.61)

The ko-integration is trivial because of the delta function, giving ko = p—k;.
In the following, we shall choose the rest frame of the pion, so that p = 0, py =

my, and hence k = k1 = —ky and w = wy = ws. We also have
Z M2 = 7r2f2 Z weijrkie’; eT
AN
8a’w?
The decay rate is thus given by
ro / 8alwt 27md(m, — 2w) d3k
B 72 f2 16m w2 (27)3
2.3
_ & Mr (7.63)

6473 f2
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The numerical value given by (7.63) is approximately 7.63 eV to be compared
to the experimental value of (7.37 &+ 1.5) eV, which is not bad as we have
made some assumptions such as ignoring the composite nature of the pion.

7.6 Cerenkov radiation

The basic process involved here is single photon emission by a charged par-
ticle. Such a process is kinematically forbidden in vacuum, but in a medium
it can happen if the velocity of the particle exceeds the velocity of light in
the medium. While the dielectric constant itself arises from interactions of
the photon with the charged particles in the medium, for the purpose of dis-
cussing Cerenkov radiation, we can have an effective description where the
medium is assigned a dielectric constant e¢(w). In this case, we have for free
photons, k? = e(w)w?. Let p,p’ denote the initial and final momenta of the
particle and let k denote the momentum of the emitted photon. Conservation
of energy-momentum gives

p=p+k
E=FE+uw (7.64)

Squaring the second of these and using the first, we find

Ew (e—1)w?

0=—
cos o ook
1 (e — 1)w?

where 6 is defined by p-k = pk cos @ and v = p/ F is the velocity of the particle.
As € — 1, the right-hand side becomes larger than 1 with no solution for 6
and the photon emission is kinematically forbidden. In the medium, light
is emitted on a cone whose angle is given by (7.65). For ¢ =~ 1, we can
approximate the above relation by

cosfh = (7.66)

1
vy/e
Of course, we need v+/€ > 1 for this to make sense. (Actually, the second term

in (7.65) is a quantum effect and hence (7.66) is all that appears classically.)
We now turn to the dynamics. The photon Lagrangian, with Ag = 0, has

the form )
1 /04 )

The canonical momentum is IT; = €A;. The expansion for A; is now
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A A) %
AT @) =3 awe]Vui(@) + afyefVuj ()
kX
@) = ———
UR(T) = ————=
b 2 € ka

where a,a’ have the usual commutation rules. The factor of /€ is required
in the denominator of uy(x) so that II, A have the standard commutation
rules. The Hamiltonian can be written as

1 [112
H:/d%§[7+32]

= ZwalkakA (769)
k

e~ ike (7.68)

We take the charged particle to be a scalar, so that the interaction term
for one photon emission is

Lint = —ied” 0, A" + - - (7.70)
The amplitude for single photon emission is thus given by

efiszrip’erikx

A= ie/d4:17 + 1g(A)
(b +p)"e; V2ewV2EV2E'V

2p - e 4
@2r)*™W(p—p' — k) (7.71)

ie
V2ewV2EV2E'V

where we have used the fact that p’-e = (p+k)-e =p-esince k-e = 0. The
photon emission rate is given by

AP €® (p-e)?
T 2V2ewEE’
The rate of energy loss is obtained by multiplying the above expression by

w since the energy loss per photon emission is w. Putting in the final state
summations, we find

2m) W (p—p' — k) (7.72)

dE e (p-e)? o sy, o Ak &
dt ZW? ewEE’ (2m)700p = p = k) (2m)3 (27)3
2
= aﬁ(l —cos?0)5(E — +/(p — k)2 + m? — w)k?*dkd(cos 0)

(7.73)

where we have carried out the integration over p’ and also used the fact that
(p- k)*
A

= p*(1 — cos? 0) (7.74)
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We carry out the angular integration; this sets the value of 8 to that given
by (7.65). For the remaining integral over k, we then find

dE [ p kdk )

Now, approximately,
1
1 —cos?f ~ <1— T)
v2e
kdk ~ ewdw (7.76)

where we neglect de/0w. Also, the final result is usually expressed as energy
loss per unit length of the path; this can be done using dx = vdt. Combining

these results iE )

This is the Frank-Tamm result for energy loss by Cerenkov radiation.

7.7 Decay of the p-meson

The decay of the neutral p-meson into charged leptons can be modeled by a
Lagrangian which incorporates mixing between the p and the photon. The
Lagrangian for the p,,e™, e and the photon is given by

L= Lo+ Lint
Lo = g e 1(a SA)? — 1y POt p¥ + lM2p2
4 2 9 nbv 2
+ iy -0 —m)y
Lint = gMQp-AJrey}y-Aw (7.78)

with 0 p = 0. The p — A term is consistent with the mixing of the p and the
photon in the so-called vector dominance approach to p-meson interactions.
The constant g has the numerical value, g =~ 5. The p-meson has many
channels for its decay. The Lagrangian given above can describe the decay of
a p-meson into an ete -pair. The partial decay rate for this mode can thus
be calculated using the Lagrangian (7.78).

The amplitude for the decay of the p of momentum p and polarization
ELA) into an e*Te -pair of momenta k, k’, is given, to the lowest order in the
coupling e by

45(4) r_ 2 U = ’
e (2m)* W (k + k' — p) i A2 D) (@ary"upr) (7.79)

V20,VEVELV g " P’
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The factor of 1/p? arises from the photon propagator due to the Wick con-
traction of the A’s in the expansion of eS¢, For this calculation, p? is equal
to M?2. We will calculate the decay rate for an unpolarized p-meson; there
are three polarization states and the average over the polarizations can be

done using
* Pubv
ZELA)EU(A) = —Tw + ](‘/[2 (7.80)
A
The decay rate for an unpolarized p-meson with a small range of final mo-

menta and all possible final spins is given by

e 1 2m)* 6@ (k + k' — p) d®kd>K
= 2 [ 2 iy - €Myl |2 7.81
92 m / 3 ; ; |uk7 €V Uy, | 2WpEkEk/ (27T)6 ( )

Using the polarization summation formula (7.80), we find

s
DO ey €Nup P =6+ o) (7.82)
A a3

For a p-meson at rest, p = (M,0,0,0) and k¥’ = —k, Ey = E). In this case
the decay rate is given by

4,2 2 _
poem 1/d3k<6+£>6(2Ek M)
m

87292 3 2 ME?
4dra? 2m? 4m?

= M1+ — 1— — 7.83
342 ( e ) M2 (7.83)

where o = €2 /47, Since the electron mass is small compared to the mass of
the p, we can simplify this to

dra® M

r~1¢

3 g

(7.84)
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8 Functional Integral Representations

8.1 Functional integration for bosonic fields

We have discussed the notion of functional differentiation earlier. Here we
shall discuss the notion of functional integration. A certain function space F
was defined in Chapter 2. For integration, we need a volume measure on the
function space F. We can do this by specifying a distance function or metric
on F. For a real scalar field ¢(z), the distance between the configurations
(x) and @(z) + dp(z) may be taken as

ds? = [|6|® = /2 d'z (5p)? (8.1)

If we expand @(z) in terms of a real orthonormal basis, i.e., ¢(x) =
> Cnn(x), the coefficients ¢, are real and we have

ds® = |6pll* = Y (6¢a)? (8.2)

n

We see that the distance defined by (8.1) is Euclidean. This would be ap-
propriate for real-valued scalar functions. The metric will in general depend
on the nature of ¢. For example, consider maps from the spacetime region
X to the two-sphere S2. Using (#,a) as the coordinates of S? (where « is
the azimuthal angle), the maps we are considering are 6(x), a(x). On the
corresponding function space, the metric should be of the form

2 = Ay 2 4 sin? a)? .
ds—/Zd [(66)% + sin® 0 (50)%] (8.3)

Since there is a choice of ¢, for each function, and each function corre-
sponds to a point in F, ¢, can be taken as local coordinates on F. Once
we have a set of local coordinates ¢, and a metric tensor g,,,, the volume
element is given by

[dp] = dV = +/detg deides--- (8.4)

In general, since we have an infinite number of ¢,’s, we must specify the
volume measure by a limiting procedure, i.e., define
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dv V) — \/W deydes -+ - dey (8.5)

where we consider N modes with a corresponding (N x N )-matrix ¢p,. Then
dV = lim dv ) (8.6)

The finite mode version of the metric is referred to as a regularized metric.
Generally, all metrics on function spaces have to be defined with proper
regularization.

The integral of interest to us is a Gaussian integral, which we now evalu-
ate. Consider

1= [dexn |5 [ dadty slapee)|  m0

Introducing a mode expansion in an orthonormal basis given by ¢(z) =
>, Cnun(z) as before, the exponent in the above equation can be written as

/E d'zdy p(a)M(z,y)(y) = Z cnMpmcm (8.8)

where

Mm :/ d*zdy up, (x) M (x, y)tm (y) (8.9)
b

We are interested in situations where M, is diagonalizable with eigenval-
ues which have a positive real part. We can then choose an orthonormal

basis which diagonalizes M; i.e., we consider eigenfunctions f,(x) of M (z,y)
defined by

/E dby M(@,9)fu(y) = Anfal2) (8.10)

Expanding ¢(z) as ¢(z) = Y, anfa(x), we have ||0p||* = Y, (da,)?, dV =
[1dan, so that

N 1
_ 2
I= A}Enoo/lzl[dan] exp [—52%)\"]
. N 2
= lim £\ —
N —o00 ) )\n
e
_ [det <_>} (8.11)
27

The determinant should be defined by the limiting procedure of first eval-
uating det M) and then taking N — oo. This method of truncating to a
finite number of modes N and then taking the limit of N — oo to define
functional determinants, and functional integrals in general, is referred to as
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a regularization procedure. Since the result involves the determinant which is
independent of the basis, it is clear that our choice of the diagonalizing basis
{fn(2)} is not a restriction.

We now consider a related integral

191 = [laglesp |- [ dtady @ire.ne) + [ e se)eta)]

(8.12)
This can be evaluated by completing the square in the exponent. We find

11J) = / [dgle™# S eMet] Ie
_ /[d(p]e—%f(ga—JM*I)M(g;—M*lJ)e%fJM*lJ

= [laglems oot [ s

1
M\ ? 1
= |det | — exp —/ d*zdty J(x)M(z,9)J(y)| (8.13)
27T 2 >
where we have used the translational invariance of the measure to shift the
variable from ¢ to (o — M~1J).
We have considered real functions so far. For a complex scalar function

o(z) we can write ¢(z) = (¢1(x) + ipa(z))/V/2, where o1, po are real. Then
the following result emerges from what we have done so far.

I[J,J] = /[dwdgﬁ]e_f¢M¢+f Je+aJd
- {det (%)]1 el (8.14)

1
Since there are two scalar fields, we get two copies of [det(M/2m)]” 2.

8.2 Green’s functions as functional integrals

The integral in (8.13) can be used to obtain a functional integral representa-
tion for the generating functional Z[J] of the N-point functions for a scalar
field. The free part of the action for a scalar field ¢ can be written as

Sy = /d4x % [(Bgoacp) — ngoz]
_ _/d%; Lo@) O+ m?)p(z) (8.15)

We need to consider the integration over all fields of exp(iSp). Sp is real and
hence such an integrand is oscillatory. We shall therefore consider the integral
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of exp(iSy — %€ [ ¢?); €, which is a small positive real number, is introduced
for convergence at large values of the field. In the end, it can be set to zero.
We have

iSo— Le [? = —%/so(:c)M(w,y)w(y)

M(z,y) = i +m? —ie)0W (z —y) (8.16)
If G(x,y) is the Feynman propagator, we have

/d4z M(z,2)G(z,y) = 6P (z —y) (8.17)

which shows that G(x,y) is the inverse to M (x,y). Direct application of
(8.13) then gives

/[dcp] exp [iSO — %efcp2 + chp] =C exp B /d4xd4y J(:C)G(:v,y)J(y)}

(8.18)
where the C stands for the determinant in (8.13). It is independent of J. The
right-hand side, apart from this constant, is just the generating functional
Zy[J] for a free scalar field theory. In other words, we have shown that

ZolJ] =C~! /[d<p] exp [iSy — 2e [©* + [ J¢] (8.19)

It is interesting in this context to note that the e-term was introduced in
the functional integral for convergence at large values of the field and at the
same time it helps to pick out the Feynman contour for the Green’s function,
leading to the propagator in the formula (8.18). The choice of the Feynman
contour is crucial for the integrand of the propagator to be continued to
Euclidean space. Likewise, the functional integral may be defined in terms
of the Euclidean action and then continued to Minkowski space and the
convergence factor ie then appears naturally. The reasons for ie in the two
contexts are clearly related.

Consider now the interacting field theory. For a ¢*-interaction, we have
shown in Chapter 5 that the generating functional Z[J] is given by

Z[J]) = Nexp [—M/d‘*w (%)4
Using (8.19) for Zy[J] we find
—i/\/d4x (%)41 /[dcp] exp [iSo — 2e [©* + [ Ty
:N//[dgo]exp [iSo—i/\/cp4—%efgo2+fJ4

N [lddlexp [iS = he [ + [ 1¢] (8.21)

Zo[J] (8.20)

Z[J] = N exp
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where
S= /d4x [3(0p0¢) — 3m?p? — Ap*] (8.22)

is the full classical action for the interacting theory. The constant N’ is
determined by the requirement of Z[0] = 1.
We can generalize (8.21) to any polynomial type of interaction as follows.

Z[J] :./\//[dgp] exp [iS — 2e [©? + [ J] (8.23)

where S is the classical action for the interacting theory and the normalization
factor is determined as

N1 = [laglexp[is - e 7] (8.24)

This result can also be directly derived as follows. We have seen in Chapter
6 that the operator equations of motion, for the ¢*-theory, are

(0o +m?)d(x) +4A¢° () = 0 (8.25)

The canonical equal-time commutation rules are

[p(z°, ), p(a°,y)] =0
[7(2, @), $(2°,y)] = =i 6P (x —y) (8.26)
[w(xo,:n),w(xo,y)] =0

where 7(2°, &) = 0pp(2°, x). Based on these, we derived, in Chapter 5, the
equation obeyed by Z[J] as

INYAR) 5\’ .
o +m® — N —— ) Z[J]=—iJ(x)Z]] 8.27
@ +mt i 5+ (57 ) 2= i@zl 2
Instead of solving this, as we have done, in terms of the free theory after
separating off the interaction term and obtaining (8.20), we will show how it
arises in the context of functional integrals. Notice that we have the following
identity:

/[dgo] % lexp [iS — 2e [? + fJgp}] =0 (8.28)

The integrand in (8.28) is a total derivative and so we can do the integral and
express it in terms of the values of the integrand at the boundary of p-space,
i.e., at large values of |p|. The integrand vanishes for large |p|, because of
the exp(—4e [ ¢?)-term and this leads to (8.28). Writing out the derivative
in this equation and noticing that
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0 : 1 2
F 57 [d(p]exp[zS—Eefw +fJ<p]:

/[dcp]F(cp) exp [iS — 1e [o* + [ Jy] (8.29)
we get

3
O +m? — ie)%(x) + 4 <%@)> + iJ(a:)] X

/[d<p] exp [iS—1e [@? + [Jp] =0

(8.30)

Comparing this with (8.27) we see that the functional integral of (8.23) gives
the solution for Z[J].

Equations (8.23, 8.24) are rather remarkable. They allow us to bypass a
lot of the operator formalism of the quantum theory and go directly from the
classical action for the theory to the generating functional for the N-point
functions, and hence to the S-matrix. And all manipulations are “classical”,
i.e., just integrals. As we shall see in the next chapter, things are not so sim-
ple; the need for renormalization of various coupling parameters will require
the use of a slightly different version (or rewriting) of the classical action
in practical computations. But this modification is still rather minor and
(8.23, 8.24) give a way of proceeding directly from the classical action to the
quantum theoretic results for the N-point functions and the S-matrix.

8.3 Functional integration for fermionic variables

We must now discuss a functional integral representation which is suitable
for fermions. The functional integral representation, not surprisingly, is pro-
vided by integrations over anticommuting c-number functions or Grassmann
variables.

We start with a definition of integration over Grassmann variables. Con-
sider first the case of one variable 7. Since any function of 7 is of the form
f(z)o+ f(x)1n, we have to define only [ dn and [ dn 7. The definition of inte-
gration will be formal, but will be consistent with the expected behaviour of
definite integrals over the entire range of 7. Consider [ dn n. Since our formal
definition of integration should mimic integration over all 7, this should be
invariant under translations of 7. Thus we require that

[an+a)= [ann (3.31)

for any Grassmann number . This tells us that [dn = 0. [ dn 1 need not
be zero. We define it to be 1. Thus the rules of Grassmann integration are
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/dn =0, /dn n=1 (8.32)

More generally, if we have N Grassmann variables n;, we find, by repeated
application of the above result that all integrals are zero except the one whose
integrand involves the product of all n’s. The only nonzero integral is

/anan—lmdnl mnz..ny =1 (8.33)

For a more general ordering of the n’s, from the antisymmetry property of
the n’s under commutation, we get

/ [An] iy Mis -+ Ning = €igin.in (8.34)

where [dn] = dyndnn—1...dn;.

The integral of interest to us for field theory calculations will be a Gaus-
sian integral. Consider N variables n; and N variables 7;, all mutually anti-
commuting. (7; are independent Grassmann variables, they are not the “con-
jugate” of n; despite the notation.) We can now evaluate the integral

I= /[dndﬁ] exp (—Zm%ﬂh) (8.35)

The only term that contributes, by (8.33), should have N 7’s and N #’s.
Expanding the exponential and using (8.34)

I= (_1)%N(N+l)%Eilig...zj\zEjljg...jNMillei2j2---MiNjN
= (=1)2NN+D (det M) (8.36)
The generalization to functions is given by
1= flanin) exp (= [ atonrtein)
— (det M) ! (8.37)

We have ignored the overall sign since it will not be relevant for us. As in the
bosonic case, the determinant has to be evaluated in a regularized way, i.e.,
it should be evaluated for a finite number of modes and then the limit of an
infinite number of modes should be taken in an appropriate way.

Finally, consider the Grassmann-valued functions 1 (z) and 1 (x) and n(z),
fj(x) and the integral

I, 7 = / (ddi) exp<— / D) M (2, yily) + / (77(1?)1/)(I)+¢7(I)77($))>
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= [1avaiy exp (= [ (= nr a3 Yoo ([ aar)
= (det M) exp (/ﬁMln) (8.38)

These results can now be applied to fermionic fields. Many-fermion prop-
agators have been discussed by introducing a generating functional

2l 7] = (O[T exp ( [+ 1/377) 0) (5.39)

The sources 7,7 are spinors and are Grassmann-valued. They anticommute
with 1,4 as well. The expression for Z[n, 7] was given in Chapter 4 as

Zhvl = oo | [ ety 015000 (5.40)

where we have chosen the normalization Z[0,0] = 1.

The integral (8.38) can now be applied to obtain a functional integral
representation for Z[n, 7). Taking M (z,y) = (—i)(iy - 0, — m)d® (z — y) the
integral in (8.38) gives

I, 7 = / (ddi) exp<— / ()M (2, yily) + / (ﬁ($)1/f($)+1/7(1?)77($))>

= (det M) Z[n, 7] (8.41)

We can write
- / D) M (2, yb(y) = i / & Piy - 0 — m)yp
x,y

= iS[, )] (8.42)

where S[¢, 9] is the action for the Dirac theory. The integral formula for
Z[n, 7] becomes

2l =N [lavai] exp [islo il + [ s (aa)o(o) + Do)
(8.43)
The generalization of this result to interacting fermion theories is entirely
straightforward. We find in all cases, involving both fermionic and bosonic
fields, that the generating functional for the N-point functions may be written
as

2170 = N / (dpdidi] exp|iSle, b, ]

+ / diz (J(@)p(x) + 7(@) (@) + b))
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where, in the integral, the fermionic variables are Grassmann valued and the
bosonic fields are ordinary real- or complex-valued functions. The normal-
ization NV is to be fixed by the requirement of Z[0,0,0] = 1. Thus given the
classical action for the fields, we can bypass most of the operator formalism
and proceed to the generating functional for the N-point functions by making
use of the above formula. In some sense, it may be taken as the definition of
the quantum theory of the fields.

8.4 The S-matrix functional

Since we have a functional integral representation for Z[J], it is clear that
we have a similar representation for the S-matrix as well. In Chapter 5, for
a scalar field theory, we obtained the formula

Fid=ew |3 [t mt| zZi@imd @)

We now use the functional integral (8.23) for Z[J]. The action can be split
as

St = [ dta (5007 = m*] + Sil)
= So + Sint (8.46)
We complete the squares in S(x) + [ ix(00+ m?)¢ to obtain
Zli@+m®)g] = N/[dx] exp [i&)(x —¢) =3[ X
+iSime (X) + % / p@+ mZ)w}
=N / [dx] exp [iSO(x) — e [+ iSim(x + )
+%’/30(|:|+m2)30}
= exp {% / @+ mQ)@] ( exp(iSint(x +¢))0
(8.47)

We made a shift of the variable of integration x as x — x + ¢ in the second
step. The angular brackets denote functional average over x’s with just the
free part of the action; i.e.,

(0)g = N / ldx] exp [iS0(x) — Le [x?] © (8.48)
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‘We have also omitted some terms of order € which can be set to zero without
affecting convergence of the integral. Using equation (8.47) in (8.45), we get

Flel = ( exp[iSint(x + @)l )g (8.49)

This equation relates Fp] to the free average of the interaction term in the
action §. We can directly expand the exponential to generate the perturba-
tion series for the S-matrix. Being a Gaussian average, the average of a prod-
uct of x’s will factorize into the products of two-point functions (x(z)x(¥)),
with suitable symmetrizations. In the equation for the averages and the S-
matrix, we have included the full normalization factor A/ for the interacting
theory. One can use the normalization factor for the free theory to define
the functional averages provided the S-matrix is properly normalized by the
condition F[0] = 1 at the end. Notice also that equation (8.49) is a way of
rewriting the operator formula (5.85).

The above derivation, although given for the scalar field theory, can be
easily extended to more general theories and one can write the S-matrix
functional as

'7:[907 a’,uv 1/)7 1/_)] = <6Xp I:Zslnt (X + <P3 A,LL + a’,ua W + 1/}5 @ + 1/_))} >0 (850)

X» Ay, ¥ and ¥ are the fields which are integrated over with the free action
in the measure to define the averages in this equation.

8.5 Euclidean integral, quantum electrodynamics, etc.

The propagators and the N-point functions can be obtained, as we have
discussed in Chapter 4, as the Minkowski space continuation via z* — iz% of
the corresponding results in Euclidean space. A Euclidean space version of
the functional integrals is very useful, especially for higher-order calculations.
We define the Euclidean free field actions for a scalar field and a fermion field
as

2

where all scalar products are taken with the Euclidean metric d,, and the
~-matrices obey v, vy + 7Yy = 20, The Euclidean version of (8.18, 8.41) is

Sko = /d4:r B(&P)Q T ime? (y 0+ m)w} (8.51)

[dedpdi) exp |=Sgo(p, ¥, ¥) + [ d'z (Jo+ i+ ¢n)
/ | / |

= Cexp [/ d*zdy (%J(m)GE(x,y)J(y) + n(x)SE(:v,y)n(y))]
(8.52)

where
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d4p 1 ip(x—
GE(J:,y) :/(27'r)4 p2+m26p( Y)

d*p 1 -
S = [ — —— ¢y 8.53
pe) = [ G e (5.53)
We may write, more generally with interactions, for the generating functional
Z in Minkowski space

Z[Jvﬁan] = ZE[Jvﬁan]}

x4 —iz0

ZglJ.i,n) = N/[dsodwdiﬁ] exp [—SE(cp,w,@b) + /d4:v (Jo+ Y + ¥n)
(8.54)

Now we turn to quantum electrodynamics (QED). As we have shown
before, the photon propagator, for calculations in QED, may be taken to
have the covariant form given in equation (6.23), namely,

4 .
Do (z,y) = k1 e~ th(z—y) (8.55)
v T, Y Nuv (271')4 12 T e .

The corresponding Euclidean propagator is given by

'k 1
Dew =0 | == -5 ik(z—y)

T 7 (8.56)

The Euclidean functional integral for QED is thus given by

ZglJ,7,n] = N/[dAd@/Jd’tz}] exp {—SE + /d4:v (A JH +m + WY)} (8.57)

where

Se(4.5,0) = [ d'e 0,404 + 8- @ ied) +m) ]

1

:/d4x EFHVF“”—i-Q(a-AF—i-z/_J(v-(3—2'614)4-7”)14

(8.58)

N is, as usual, fixed by the requirement Z|0,0,0,] = 1. The integration over
A’s in (8.57) is done with the standard Euclidean measure on the space of
A’s.

The general idea of the functional integral being given by the integration
over the classical action, as discussed after equation (8.44), would suggest
the use of the Maxwell action f %Fz, or its Euclidean version, in the for-
mula (8.57). The fact that one has to use the action as given in (8.58) has to
do with gauge transformations. Since A4,, and its gauge transform A, + 9,0
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are physically equivalent, there is redundancy in the choice of field variables.
For integration over the Maxwell action, one must then use a measure where
this redundancy has been removed. The use of such a measure, which we
shall discuss in more detail in the chapter on gauge theories, will lead to
the above formulae for QED. In summation then, for all theories, the Eu-
clidean functional integral for the generating functional can be written as the
integral over exp [—~Sg| with integration over the space of all physical, i.e.,
non-redundant, field configurations. (For QED there is a further averaging
over gauges needed to get to the formula (8.57), see Chapter 10.)

8.6 Nonlinear sigma models

Nonlinear sigma models are an important class of field theory models. The
functional integral for these theories has a nontrivial measure for integration
over the fields. It is interesting to derive this following our general approach
of using the operator equations of motion and the equal-time commutation
rules.

Consider a general Riemannian space M, which may have nonzero cur-
vature, with coordinates o and metric

ds®> = Gapdp?de® (8.59)

The metric tensor G4p is in general a function of the coordinates . The
action for a point particle moving on such a space can be taken as

1 do? dpB
S / T 2GAB p— (8.60)

where 7 parametrizes the trajectory. The classical equations of motion are
the geodesic equations, the classical trajectories are geodesics. As a general-
ization of this notion one can consider fields ¢ (z) which give a map from
the spacetime to the Riemannian space M. This space M into which we are
mapping from spacetime is often called the target space. The action is then
taken as . P
_ — 74 pro i ¥
S= [ VEads ¢ SGany G
The action is determined by the metric of the target space. For generality,
we have written g"” for the spacetime (inverse) metric. The formulation of
the theory along the lines given here is applicable for the case of a general
spacetime which may have nonzero curvature as well. One can also consider
Euclidean signature for the spacetime. For flat Minkowski spacetime, which
we consider for the rest of this section, g#” = nt¥.
Field theories defined by the action (8.61) are called nonlinear sigma mod-
els or sometimes, they are called chiral models. (The reason for the name

(8.61)
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“sigma models” is historical; it arose in particle physics literature, in the

context of chiral symmetry breaking, from a linear field theory model where

there was a field which was designated by o; the nonlinear model resulted

from taking the mass of o to be large compared to the momenta of interest.)
The classical equations of motion for this action are

0
— [GAB

_ 9P | 19Gpc 9" dp°
ozt

= .62
oz, 2 9pA Ozt Oz, 0 (8.62)

The solutions to this equation form a special class of maps from the spacetime
to the target space M which are a generalization of the notion of the geodesic.
Such maps are called harmonic maps in the mathematical literature.

The importance of this theory in physics has to do with Goldstone’s the-
orem. Consider a field theory which has a continuous global symmetry cor-
responding to a Lie group G. (A symmetry is global if the parameters of the
symmetry transformation are constant in spacetime.) If the vacuum state
does not have this symmetry G, but is symmetric under a subgroup H, we
say that the symmetry G is spontaneously broken down to H. A typical exam-
ple is the Heisenberg ferromagnet for which the action has three-dimensional
rotational symmetry, but the ground state, which has spontaneous magne-
tization along some direction, breaks this rotational symmetry. Goldstone’s
theorem tells us that there will be massless particles corresponding to each
broken symmetry. There are (dimG — dimH ) such massless particles called
Goldstone particles. Further, since the particles are massless, at low ener-
gies, where one does not have enough energy to excite massive particles,
we essentially get the dynamics of the Goldstone particles interacting among
themselves. The action for the Goldstone bosons is given by a nonlinear sigma
model of the form (8.61) where the target space is the group coset space G/H.
Thus nonlinear sigma models are important in all physical contexts where
spontaneous breaking of continuous symmetries occurs. (The phenomenon of
spontaneous symmetry breaking is discussed in detail in Chapter 12.)

In this section we will just consider the functional integral for the sigma
model following our general derivation of the functional equation for Z[J]
which is defined in the usual manner as

201 =017 exp ( [ 746 10
=( T exp (/ JAQDA) ) (8.63)
The canonical commutation rules for the fields are

[ (2% @), 9" (2°,y) ] =0
[ (a0, @), MR, y) ] =i o5 6P (z—y)
[ 13(2°, ), (" y)]=0 (8.64)

hS
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where IT% = Gap0"pP. We also define

F(2°,9°) = Texp (/j dzo/d?’zJA(z)goA(z)> (8.65)

By direct differentiation we check that this obeys

oo P ) = | (#2040 20040, 2)| PG

oo Fat?) = = Fa®) | [ 20,00 200002)] - .00)
Using this quantity we can write
O (T T (w)el 79) =0, (F (00, 2%) T (2)F (2°, —o0))
:<F<oo,x0>[nz<x>, [ #20aa 21046, 2)] a0, ~00)

(0,1l 7%)

dGpc 0p” 3<P chp
dpA B oz,

=—iJa()Z[J] + 3 <T (8.67)

where in the first step we have used equations (8.66) and in the second step
we have used the commutation rules (8.64) and the equation of motion (8.62)
interpreted as an operator Heisenberg equation of motion. We now write

opP

Ly

(TGAga“ngef Tey = [GAB( ) ] Z[J] (8.68)
where ¢4 = §/6.J4. In taking the factor 0"pP outside the vacuum expec-
tation value and replacing ¢ by the functional derivative with respect to
Jp, we may worry that there is an equal time commutator term due to the
time-ordering. There is indeed such a term, but it involves the commutator
of ¢ with ¢ and vanishes by (8.64). Equation (8.68) can be used to simplify
the left-hand side of (8.67). We want to make a similar simplification of the
right-hand side. We start with the expression

0 IGpc
Az (T A4 (x)

0P () (2) el 79y = 0T Ot 4 (w) ¢O(2) ] 77)
(8.69)

In simplifying this, we encounter commutators when we bring the 2°-derivative
inside the time-ordering symbol. By writing out the time-ordered product as

T 0% ()¢ (2) ] 7%

= | F(c0, IO)OéA(ZE)F(IO, zo)wc(z)F(zO, —00)9(3:0 - ZO)
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+F(00,2°)p (2) F(2°,2°) O, , () F(2°, —00)0(2° — %)

(8.70)
and carrying out the differentiation using (8.66) we get
2 (T O 4 (@) (2) &) 7%) _ (p0GBo 927 057 [ 1o
Oz cA dpA Oz, Ozt
o, <8GBCGBC76 4) f]%’
A
(8.71)

We have used the fact that

9Gpc 0, B C(,0 9Gpc BD 0, E C/..0
o 067" 2), 60 )] = TGP Gpd P 0l @), 7 (00, 2)]
- 3{;;3() GBD[H%(xO,:B),cpC(xO,z)]
80
_ aGBC BC ¢(3)
=i BCGBCsO) (1 — 2) (8.72)

The idea now is to take z — x so that the first term on the right-hand side of
(8.71) is what we want to simplify in (8.67). But this leads to the expression
5™ (0) which is the related to the volume of the momentum space. Thus we
have to have a truncation of modes to do this entirely correctly. But we can
proceed by writing this expression formally as follows. Notice that pointwise

aGBC BC 3
goa G7 = gt logG (8.73)

where the trace is over the indices B, C. The quantity log G may be regarded
as an integral kernel with

(z|log G|z) = 6W (z — 2) log G (8.74)

so that by taking a functional trace as well as the trace over the indices B, C,
we get
Tr log G = 6(0) Tr log G (8.75)

where Tr denotes the functional trace as well. Using equations (8.71) to (8.75),
we can now write

OGpc Op? 590 fJLp 10 " fJLp
oA dzk Bz, 20z (T Ocal

Z—X Z—X

(Trlog @) ) 7%y (8.76)

1
2T

5
5 ()
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Taking the remaining terms out of the expectation value as functional deriva-
tives with respect to J does not cause problems. The commutators encoun-
tered along the way involve only ¢’s and vanish. In particular, we bring out
the OF, , (%) (2) in the first term on the right-hand side as functional differ-
ential operators on Z[J] and then carry out the differentiation with respect
to z* and then take the limit z — z. Using (8.68) and (8.76) in (8.67), we
get,

0 OB 190G e OB ; 1)
[ (GAB(SQ) Ld > pegy 99 | ! (Trlog G) Z[J]

Ozt 9z, ) 2 dpA zr dx, | 2092 (x) A
¢
= —iJa(z)Z]J]
(8.77)
In terms of the action (8.61) we can express this equation as
0S i 6
- + = TrlogG} Z\|J| = —iJa(x) Z|J 8.78
A gy ee| =iz e

The integral of a total functional derivative will vanish with appropriate
fall-off behavior for large ¢, so we can write

)
/[d@]&,ﬁ exp (iS + 1 Trlog G + [ Jp) =0 (8.79)

Carrying out the differentiation leads to

.08 19 is+ 3Trlog G+ [ Jo _
/ ] {Z SoA(@) T 25pA0) s JA(I)] 7 =0
(8.80)

Bringing out the ¢’s as differentiation with respect to J’s in this equation,
we get

iS+ %TrlogG—l— [Je

[‘ ot A s G] - i

. 1

Comparison with (8.78) shows that we may solve for Z[J] as a functional
integral

Z[J] = ./\//[d(p] exp (iS + 1 Trlog G + [ Jo)
=N / [dp]Vdet G exp (z’S—i— / Jcp) (8.82)

As usual, this result is up to a normalization factor N.
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On a Riemannian space with metric Gapdp?dp®, the volume element is
given as vdet G [] de. This is indeed the volume that has emerged naturally
from the above analysis for the functional measure for the sigma model. What
needs to be done regarding the 6(*(0) that we encountered is also clear
by now. We need to define a suitable regularization procedure to evaluate
the functional determinant det G and then use it to evaluate the functional
integral as well in a regulated way. As in the derivation for the p*-theory, the
ie-term which has to be added to ensure the convergence of the functional
integral at large values of ¢4 (and which leads to the choice of Feynman
contour for propagators) will give the required fall-off behavior for the validity
of the vanishing of the integral of the total derivative in (8.79).

8.7 The connected Green’s functions

In Chapter 5, we saw that the perturbative expansion of the Green’s functions
and the S-matrix can lead to connected and disconnected Feynman diagrams.
For example at the second order, the diagram in figure 8.1 is a disconnected
diagram with two connected pieces while the diagram in figure 8.2 is an
example of a connected diagram. At higher orders, obviously, we would get
large numbers of disconnected diagrams. We now show that there is a general
relationship between the generating functional for Green’s functions or the
S-matrix functional and the generating functional for connected diagrams.

Fig 8.1. An example of a disconnected diagram

The generating functional Z[J] can be expanded as
1
ZJ] = Z N /d4a:1...d4a:NJ(x1)...J(3:N)G(3:1, . IN) (8.83)
N

where

G(x1,...xN) = ./\//[d(p]efsE o(x1)...0(zN)
= (p(z1)...p(xN)) (8.84)
Nt = / [dple=5F (8.85)
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Fig 8.2. An example of a connected diagram

(We shall use Euclidean Green’s functions for most of what follows.) The
Green’s functions are averages over the fields with a probability distribu-
tion given by Ne~SE. Disconnected Green’s functions arise when an av-
erage like (¢(x1)...p(zn)) factorizes as, for example, into (p(z1)...0(xk))
(p(@k41)--p(xn)). Let G denote connected Green’s functions, viz., G is
the fully connected Green’ function with N fields. A general Green’s function
can be written as the sums of products of connected Green’s functions. Let
G(z1,...xn) have ny factors of G§, ny factors of G§, ...,etc. The number of
ways of factorizing G(z1,...xn) in this fashion is the same as the number
of ways of partitioning N particles with n, boxes with one particle each, ns
boxes with two particles each and so on. For convenience of the argument,
define Q = [d*zJ(z)p(x). The expansion of Z[J] involves the averages of
products of @’s. Let G denote the average of N @)’s. In the partition of Gy,
it is clear that the exchange of the ny boxes does not give a new partition;
also exchange of the k particles in a box does not give a new partition. Thus
the partition of G looks like

C 2')
Gy = | 1 ( / )
N=)_ N [ - (8.86)
{nx}
subject to the condition ), nyk = N. Thus we may write
(GS/sh)ms
Gy =Y NI6(N = npk) H - (8.87)
{n&}

We now use this factored form in (8.83); the summation over N in (8.83) then
effectively removes the constraint imposed by ¢ (N — > nik) and we find

Go)™ (Gg/2)™ (Gs/3)"
J]zZé(N—ank) Z(nl)! ( 7{2!) ( 43!)

{nx}
(G5/21)"2 (G5/3!
_ Z /2!) ( T{B!)

{ne}
GC
= exp (GY) exp ( 2'2)
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= exp (W[J]) (8.88)

where

1
WIJ) = Gf + G5 + ...

= /d4xJ(:17)Gc(x) + %/d4x1d4x2J(:r1)J(x2)Gc(:171, x9) + -

_ ZN: % //d%l...d4a:NJ(x1)...J(xN)G°(x1,---:EN) (8.89)

WJ] is the generating functional for the connected Green’s functions.

In the above result, we have used the normalized probability distribution
Ne~SE. Therefore there are no purely vacuum diagrams here; they are given
by [[dple=SF and are removed by the normalization factor. A result similar
to (8.89) holds for the vacuum diagrams as well. If calculations are done
at a finite temperature and density, the average [[dy]e™Z represents the
statistical partition function. Its dependence on control parameters such as
temperature and chemical potential are of interest. (The background heat
bath now plays the role of the vacuum state.) In this case also, there is a
version of the result (8.89). This is best seen by writing

N7 = /[d(p]e_SE = (e Sinty,
= 3 S, (5.90)
i

where the average is taken with the free action. Just as we considered the
number of different ways of partitioning the product of @’s to get (8.87), we
can now consider the number of different ways of distributing the S;,:’s to
write, in terms of connected functions,

NS (N Yek) Y S (850 /2 (k) /3

nl! ng! ng!
{nw}
((Sine) )™ ((S74)°/2)72 ((S5,0)7/3D)"™
= Z - - -~
{nw}
2 \c
— xp ((Sint)) exp (%)
= exp (W) (8.91)

where the superscripts on the angular brackets again denote the connected
vacuum diagrams with the indicated number of S;,,;’s. W is the sum of all the
connected vacuum diagrams. (Again, in the statistical context, by vacuum
diagrams we mean processes involving scattering between particles in the
heat bath or other similar thermal fluctuation effects, with no incoming or
outgoing particles except those in the heat bath.)
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8.8 The quantum effective action

Closely related to the generating functional for the connected Green’s func-
tions is the quantum effective action I'[@]. It is the Legendre transform of
WJ] defined by

e = / Jb — WJ] (8.92)
where the relation between @ and J is defined by the connecting relations

or

o) @
SW
570 = 2@ (8.93)

These equations may be regarded as defining I'[®] if we are given W[J], or
as defining W[J] if we are given I'[®]. If W[J] is given, we obtain J as a
function of the free variable ¢ by the second equation in (8.93); substituting
this into (8.92), we obtain I'[@]. Conversely, given I'[®], we can obtain ¢ as a
function of a variable J using the first equation in (8.93), and then use (8.92)
to define W[J]. One can expand I'[®] in powers of ¢ as

1 -
F[@] = Z ﬁ /d4$1d4$2 t 'd4$N @(xl)é(xg) s QY)(LL'N) V(l‘l,l'g, ...,{EN)
N .

(8.94)
The coefficients V (z1, 2, ..., xn) are easily checked to be vertex functions,
namely, Green’s functions with the external lines removed or amputated, as
in (5.25). However, these are actually one-particle irreducible. In the graphical
representation of vertices and Green’s functions, a diagram is said to be one-
particle irreducible (1PI) if it does not become disconnected upon cutting
any single one-particle propagator; diagrams which become disconnected are
reducible. I'[P] generates all the 1PI-vertices.

From the connecting relations (8.93), we can write

2 ~
where
~ 2w
G(z,y) = O] (8.96)

The result (8.95) follows since 0¢(x)/dJ(y) and 6.J(x)/dP(y) are inverses of
each other. Notice that we have not set J = 0 in (8.95) or (8.96). By differen-
tiating the relation (8.95) many times with respect to @(x) and using the con-
necting relations (8.93), one can check that the coefficients V (1, zy, ..., zx)
in the expansion of I" are indeed the 1PI-vertex functions.
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We can obtain an equation of motion for I" directly from the equation of
motion for Z[J]. Using the functional integral representation

ZN/[dgo] exp [—SE(cp) —i—/Jgp} (8.97)
we have the equation of motion

B

w}szm:sz (8.98)

P=37

In fact, it was from the Minkowski space version of this equation, viz., (5.9) or
(8.30), that we obtained the functional representation for Z[J]. In the above
equation, the left-hand side involves various powers of derivatives with respect
to J acting on Z[J]. This can be simplified as follows. Using W = log Z in
(8.93) and differentiating, we get

1 87 )
G(Il,IQ) +¢(ZE1)€I)($2)

+ &(z1)P(22)

= §(z1)d(w2) - 1 (8.99)
where 5
b(x1) = B(x1) + /d4x2 é(xl,@)m (8.100)
Differentiating once more, we find
! *z = O(x1)D(22)P P(21)G
Z 6 (x1)8J (x2)0J (x3) (21)0(@2)P(wa) + P(21)G (o2, 33)

+€I) .IQ G(Ig,Il) ( )G(Il,IQ)

6G($2, $3)
/ G$1,$4 5¢(ZE4)

= G(1)d(w2)d(x3) - 1 (8.101)

where we have also used (8.96). We see that differentiation with respect to J
may be replaced by the action of ¢. We can therefore write (8.98) as

2 ~
/d4z [m} G(z,y) = 0W(z —vy) (8.102)

We have also repeated (8.95). It can be interpreted as defining G(z,y) in
terms of I'. With G(x,y) given by this, the first equation in (8.102) is a
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nonlinear equation for I'[®]. Given a classical action Sg for the field, we can
directly set up the equations (8.102). These equations can be considered as
the fundamental equations for defining the quantum theory of the field. In
this approach, W[J] is a derived quantity given by (8.92) as

W] :/ngs — @]

J(z) = %ﬁ;) (8.103)

The second equation is to be solved for J as a function of @. Equations (8.102),
which may be taken as another definition of the quantum theory of the field,
are a functional version of what are often referred to as the Schwinger-Dyson
equations. They can be constructed in an analogous manner for any field
theory.

It is useful to write out the Schwinger-Dyson equations for the simple
example of a p?-theory in some more detail. The Euclidean action is

1 1
Sp = /d4x {5(8@)2 + §m2<p2 + Ap? (8.104)

For the first of equations (8.102) we find

%&) = K&(z) + 4A8° (2) + 1208(2) G (, )

—4)\/ é(xvzl)é(ﬁf, Zz)é(fﬂ, z3)Va (21, 22, 23)

(8.105)
where K = (—[0+ m?) and we have used the fact that we can write
0G(z,y) / ~ §3r ~
50(z) S, SO P sa s em(n) Y
= - G(x, 21)Va (21, 22, 2)G(22,y)
. §r
Vqs(Zl,ZQ,Z) = 5@(2’1)543(22)543(2) (8106)

which follows from the fact that G(z,y) is inverse to 621'/6(y)d6®(z), ac-
cording to the second of equations (8.102). The vertex functions Vo depend
on @; when @ is set to zero, they become the usual vertex functions of (8.94).
Likewise, G(z,y) becomes the exact propagator when & = 0.

The second derivative of I is given by

Va(1,2) = K(1,2) + 12) [@(1)2 +G(, 1)} 5(1,2)
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—12/\43(1)/ G(1,3)G(1,4)V(3,4,2)
3,4

+12)\/ G(1,3)Va(3,4,2)G(4,5)G(1,6)G(1,7)V(5,6,7)
3,007
—4\ G(1,3)G(1,4)G(1,5)Va(3,4,5,2) (8.107)
3,4,5
We use the simplified notation G(1,2) = G(z1, x2), etc. and K (1,2) = (— +
m?)§(x1,x2). When @ is set to zero, the three-point vertices vanish since the

theory has symmetry under & — —@. The second equation in (8.102) can
then be written as

/V(1,3)G(3, 2) =46(1,2)

’ V(1,2) = K(1,2) + X(1,2) (8.108)
2(1,2) = 12AG(1,1)5(1,2)

—4)\ G(1,3)G(1,4)G(1,5)V (3,4,5,2)
3,4,5
The equation for V(1,2) involves higher V’s, the four-point one in this case.
One can derive equations for the higher vertices by further differentiations
of equations (8.105) or (8.107). This will involve still higher vertices, leading
to a whole infinite chain of equations. One needs to truncate them at some
stage to do useful calculations. For example, for the four-point vertex we find

V(1,2,3,4) = 41X 6(1,2)5(2,3)5(2,4) + - - - (8.109)

If we truncate this by keeping only the first term, the term which is explicitly
shown in (8.109), we get

2(1,2) = 120G(1,1)8(1,2) — 4! 4X2G(1,2)? (8.110)

This can be used in (8.108) to get a closed set of equations for the propagator
G(1,2).

The Schwinger-Dyson equations are a set of equations for the exact prop-
agator and exact vertices. One can generate the perturbation expansion from
them by expanding around the free propagator. Let Go(z,y) denote the free
propagator; the subscript is to emphasize that this is for the free theory. We
can then convert the equation for G into an integral equation as

G(1,2) = Go(1,2) — / Go(1,3)X(3,4)G(4,2) (8.111)
3,4

This equation, together with the equation for X(1,2), can be used to generate

a series expansion for G. If we use the approximation (8.109) and compare

the resulting series with the standard perturbative expansion for G, we can

see that the equations (8.108) amount to resummation of an infinite set of

Feynman diagrams.
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8.9 The S-matrix in terms of I"

One can extend this point of view, namely, regarding the definition of I"
directly in terms of the classical action as the way to quantize the theory, to
the calculation of the scattering matrix as well. We have seen in (5.27) that
the S-matrix functional may be written as

Flel = Zli0+m*)g] = V) (8.112)
J=i(Hm?)e

(There is also a trivial factor ¢ 2 Je@+mDe Ghich we have not displayed
since it is not important for what follows.) The S-matrix elements are ob-
tained by replacing ¢ by the free one-particle wave functions as in (5.24). The
free one-particle wave functions obey the condition ((1+m?)e = 0, or J = 0.
(This is to be done after the required number of differentiations with respect
to J or ¢.) Using the Minkowski space version of (8.92), we may write

W[J] :/d4x J& + il'[®) (8.113)

When J is set to zero, we have

sr
53 =0 (8.114)

and W becomes iI'[P] evaluated on solutions of the equation (8.114). In other
words, from equations (8.112, 8.114), we can write

F =8 =exp(i I'a)) (8.115)

SL
56 =0

The S-matrix is given by the quantum effective action evaluated on solu-
tions of the equation (8.114). This relation gives a nonperturbative definition
of the S-matrix. The solutions to the equation % = 0 will be parametrized
by some set of variables; this free data in the solutions are the quantities
on which S depends. Perturbatively, the free data are the amplitudes ay, a
in the solution for ¢ written as ¢ = >, arur(x) + ajuy(x). Here ay, aj are
viewed as c-number quantities. The amplitudes for specific processes are then
obtained by differentiating S appropriately with respect to ay, aj and then
setting them to zero. There are many applications of this definition of the
S-matrix; for example, one can use it to derive recursion rules for scattering
amplitudes whereby amplitudes with a certain number of external lines are
generated recursively from amplitudes with lower numbers of external lines.

Equation (8.114) can be considered as the effective quantum equation of
motion, namely, as a c-number equation which nevertheless captures the full
effect of the quantum dynamics. We see that I is not only the generating
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functional for 1PI diagrams, it defines the quantum theory of the field en-
tirely. By solving the equations of motion (extremization condition for I"), we
can define the S-matrix. One can also use it for analysis of nonperturbative
aspects of the theory, for example, for analyzing nontrivial ground state prop-
erties. In most of the situations we have considered so far, the ground state of
the sytem was the ground state of the free-field theory. While this is adequate
for perturbation theory, there are many situations where the ground state is
modified by the interaction. We will need a nonperturbative analysis to see
if a new ground state is dynamically chosen or preferable. The calculation
of I (nonperturbatively) and its subsequent extremization can answer this
question.

8.10 The loop expansion

The diagrammatic expansion of the Green’s functions or W[J] leads to a
diagrammatic expansion of the vertex functions in I". A systematic expansion
procedure, which is useful both conceptually and for practical calculations,
is given by expanding I" in powers of h.

The functional representation for Z[J] is given by

2] =N / (dig] exp {—%SE@H / Jga} (8.116)

This is the same as equation (8.97), but we have now explicitly indicated
where 7 appears. Since the propagator G is the inverse to K where % [eKe
is the free part of the action, we see that, with % included, G = hK~! ~ L.
From (8.116), we also see that the vertices must go like 1/A. For any term
in I" represented as a Feynman diagram with V; vertices of type ¢, I internal
lines or propagators and E external lines, we have

> vVi-20=E (8.117)
3

where v; is the valence of the vertex of type i; for example, for an inter-
action term A¢?, the valence is 4. The E-lines carry E external momenta.
The I-momenta for the internal lines are constrained by the momentum con-
servation d-functions at each vertex. One d-function simply expresses overall
conservation of momentum. There are thus ). V; —1 d-functions constraining
the internal momenta. The unconstrained internal momenta are the loop mo-
menta which are to be integrated over. Thus, for the number of loop momenta
or loops L, we have

L=1-()_Vi-1) (8.118)
I

The number of powers of h is given by I — 3. V;, which is equal to L —1 from
the above equation. A term with L loops in its diagrammatic representation



128 8 Functional Integral Representations

will go like ™!, In this way, we see that the quantum effective action has
an expansion of the form

%F[@] = i Rt g (8.119)
L=0

with the L = 0 term corresponding to the classical theory; this has no loops.
Diagrams with no loops are called tree diagrams. The h-expansion is a sys-
tematic way to classify and analyze the quantum corrections.

In the expansion (8.119), the term I'©)[@] is in fact the classical action
SE(P). We can see this as follows. Using the definition of I" in (8.116), with
the factor of h inserted, we can write

exp(—310]) = & [lde] exp (~385(0) + [ 70— 0))

ZN/[dw] exp (_%SE((P"’@) +/J<p>

cxfioten{- s o1/ 5)
(8.120)

Using the expansion (8.119) and Taylor-expanding in powers of ¢, we find

exp(— gn r[g]) = N exp(~7 S5 (®)) x
1 51 oS
[ias explﬁ/so( o)

L (PSEY
on | ¢ dpde 4590

(8.121)
The first two terms in the h-expansion give
1[g) = Sg(®)
1 528
I'V[@] = = logdet (7E) 8.122
2= 5 o8 et . (8122

The determinant involved is a functional determinant. For example, for the
Ap*-theory we have

r= / B(M)Q + %m2€l)2 + /\434]

h
+ 5 logdet(-O+ m? +1200%) + O(h?)  (8.123)
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The identity Trlog A = logdet A, which is certainly valid for any diagonaliz-
able matrix A, and more generally for all matrices since diagonalizable ma-
trices are dense, can be used to define and evaluate functional determinants.
This gives

h h
7 log det(—O+ m? + 12\8?) = §Tr10g(—D +m? + 1208?)

h
B /d4x<:v| log(—0O+ m? + 1208%)y)
y—z

(8.124)

Expansion of this in powers of @ will lead to a series of terms which correspond
to one-loop diagrams with increasing numbers of external lines or @. A general
formula for the result is difficult because ¢ depends on z and one can have
many derivatives of @ appearing. If one is interested only in very slowly
varying fields @, one can evaluate the determinant explicitly, neglecting all
derivatives of @ and treating it as a constant. This would also be the lowest-
order term in an expansion of the determinant in powers of derivatives acting
on ¢. The term in I' corresponding to constant fields is called the effective
potential; it was defined and evaluated to one-loop order by Coleman and
Weinberg. For the one-loop correction to the effective potential, namely, the
lowest-order term with no derivatives of @, we have

5[0 [ o
F(s)

g /d4x<x| log(—0O + m? + 12)&?)|y) 1 log(k? + s)

Yy—x

(8.125)

where s = m? + 12)\2.

OF (s) _@/d4 / Ikl
ds 2 v 2m)* k2 +s

I d3k 1
=— [ d* / 8.126
2 / o @23 2vVEk -k +s ( )

Integrating, we find

3
F(s):/d‘lx/ﬁ [lh\/k-k—l—s—lhx/k-k—i—m2 (8.127)
(2m)3 |2 2
The expression for F', apart from the volume integration, is of the form of
the sum over zero point energies with s in place of m2. We have chosen the
constant of integration for the s-integration to be the zero-point energy for the
free theory, so that F(s) is zero without the ¢*-interaction. The k-integration
in (8.127) is divergent and the proper way to handle this is to evaluate it with
a cutoff on the momentum and absorb potentially divergent terms into various
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parameters of the theory. This is the procedure of renormalization discussed
in the next chapter. For now, we evaluate it with a cutoff, or an upper limit
for |k|, denoted by A and obtain

h
F(s) = 39,2 /d4x

m2

2 2 m? 2/ 2
24\P <A + o 710g(4/1 /m )>

+(1200%)2 G - %log(él/lz/mz))

1, b 12782
+§(m + 12X9°)° log (1 + =
(8.128)

For the sake of completeness, we will give here the renormalized form of the
effective action, although details are discussed only later. To one-loop order,
I' is given by

I = / B(z@)? + %m2¢2 + /\454}

1292
m2

+

1 [(m2 + 1209%)% log (1 +

) — 122m2¢? — 216)\%p*
(8.129)

As mentioned at the end of the last section, extremization of I" can define
the quantum theory. In (8.129), we have done a one-loop evaluation of I’
for slowly varying fields. Notice that when we set the variation of I" to zero,
the source J is zero and hence @ is identical to (0]¢|0); it is the vacuum (or
ground state) expectation value. If the ground state is translationally invari-
ant, then the expectation value is a constant. Thus, the effective potential
approximation, where gradients of ¢ are neglected, is adequate to analyze the
ground state expectation value of ¢ in the full theory, if we assume that the
vacuum is translationally invariant. Our evaluation of the effective potential
to one-loop order can be used as a first approximation in this endeavor.
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9 Renormalization

9.1 The general procedure of renormalization

We have already seen that the effective action I" can be expanded in powers
of has I' =%, hE () where I'Y) generates the one-particle irreducible
(1IPI) or proper vertices with L loops in the Feynman diagram. The loop
integrations correspond to the fact that the interaction can induce virtual
transitions to various intermediate states. Alternatively they may be thought
of as the interactions of the incoming fields with the quantum fluctuations
of the field in the vacuum (which must exist since the field and its conjugate
momentum do not commute). If the loop-momenta are allowed to become
arbitrarily large, which is to say that if transitions to virtual states of arbi-
trarily large momenta can occur, some of the integrals can and do diverge.
In effect, this means that the field theories we are discussing, with point-like
interactions at short distances, are inadequate as descriptions of the physical
world at very high momenta or at very short distances. We must consider
these theories as valid only for momenta less than some very large value A.
All loop-integrations are to be cut off in some fashion at this value A. The
specific procedure for introducing a high momentum (or ultraviolet) cut-off
in the theory is called a regulator or a regularization procedure. The resulting
theory, which has an ultraviolet cut-off, and hence no divergent integrals, is
called a regularized theory. The aim of quantum field theory is to provide a
description of physical phenomena in terms of such regularized theories.

In using quantum field theory for practical calculations, we must therefore
take account of the following points.

1. First of all, one needs a regulator which makes all loop integrals mathe-
matically welldefined and finite. The calculated results with a regulator
will depend on the cut-off A and hence on the specific regulator used.
Unless we have a good reason to choose a specific regulator, this would
lead to some ambiguity in the predictions of the theory even after a La-
grangian is chosen.

2. The calculated results such as the S-matrix will also depend on the pa-
rameters such as the coupling constants (generically denoted Ag) and
masses (denoted mg) which appear in the Lagrangian. (These parameters
in the Lagrangian are often called the bare parameters.) The physically
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measured couplings and masses are not the parameters in the Lagrangian,
since there are, in general, corrections to them due to interactions. The
measured couplings and masses are thus functions of the bare couplings
and masses and the cut-off A. These are calculable functions once a regu-
lator is chosen. In interpreting the calculated results such as the S-matrix
or the effective action I'" and in comparing them with experiments, we
have to rewrite them in terms of the actual measured parameters A and
m.

The two issues above are related. The idea of renormalization is that one
can absorb all the A-dependence or regulator dependence of the calculated
results into the relation between the measured parameters A, m and the bare
parameters \g, mg. In other words, the calculated results, when expressed in
terms of the physically measured parameters, do not depend on the choice of
the regulator. Thus after computation of the loop corrections and rewriting
everything in terms of the measured parameters, we end up with the unam-
biguous predictions of the theory. The measured parameters A\, m are often
called the renormalized parameters.

The transformation of the parameters can be done at the level of the
starting Lagrangian itself. For example, for the scalar field theory with quartic
interaction, we can write

1 1
L= [5(396)2 + §m(2J XQ] + Ao x* (9.1)
=73 B(aw + %(m2 - 5m2)<p2] +Zi At (9.2)

The transformation between the bare and renormalized quantities is explicitly
given by

No =21 732\
mé =m? — om?
X=VZ3e (9.3)

Z1, Z3 and ém? are functions of A and the renormalized parameters A\, m. It
will become clear that a transformation of the fields will also be necessary;
this is the reason for the factor Zs. (This may be thought of as arising from
corrections to the canonical structure of the theory.) The quantities 71, Z3
and ém? are called the renormalization constants.

Since corrections arise due to loop diagrams (which carry powers of h),
we can write

Zi=1+ > ntz?
1

Zs=1+ > bz
1
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om? = " h"(6m*)®) (9.4)
1

The renormalized parameters are, by definition, the measured values of
the coupling constants and masses. Therefore, there are no further corrections
to them. This means that the renormalization constants must be such that
they cancel out any corrections which may arise from the loop calculations.
The strategy for perturbative calculations is then the following. We start with
the Lagrangian (9.2) and calculate I'[®] with some regulator. dm?, Z; and
Z3 are then chosen so that in I'[®] the mass is m?2, the @*-coupling is A and
the normalization of the kinetic energy term is 1. I'[®] should then have no
terms which diverge as A becomes very large. The specific value of A is then
immaterial except that it should be large enough so that terms of order 1/4
can be ignored. From I'[®] one can obtain W[J], the generating functional
for the connected Green’s functions by the Legendre transformation (8.103).
The S-matrix can then be constructed from this. (What we have described
is one ‘scheme’ of renormalization. There is some freedom of A-independent
redefinitions in relating the renormalized parameters to experimental mea-
surements, leading to other ‘schemes’. This is briefly discussed in the next
section. Such schemes can be useful in some contexts, for example, when we
have massless particles.)

We shall now work through the implementation of these ideas to one-
loop order in the scalar field theory with quartic interaction. There are still
many more features of this renormalization procedure which require further
discussion, but we shall do that at a later stage.

9.2 One-loop renormalization for scalar field theory
Since we are not interested in vacuum diagrams, at least not at this point,

the simplest one-loop correction we can calculate corresponds to two external
lines and is given by the following diagram.

Fig 9.1. Scalar self-energy
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The 1PI-diagrams and the corresponding vertex functions can be obtained
from the general expression for the S-matrix functional given in (5.18). The
Euclidean version of this is

Flp] = Nexp (% G%%) exp [—Zl)\/go‘l} (9.5)

The mathematical expression corresponding to the Feynman diagram given
above will have one power of the coupling constant and one Wick contraction.
It is thus given by the term

=N (5 o) o [
62N / & Gz, )2 (2) (9.6)

The propagator is given by

1 dAk ik-(x—vy)
/ ¢ (9.7)

G ==

(z,9) Zs ) (2m)* k2 4+ m? — om?
For this calculation, we will get one power of & from the propagator. Thus,
to get the O(h)-term in the effective action, we only need Z1, Z3 and dm?
to O(h%) in the propagator and in (9.6); i.e., we can take Z; ~ 1, Z3 ~
1, 6m? =~ 0 on the right hand side. The term corresponding to (9.6) in I'[®]

is then o
1 _ p 1 4 1o

If the integration over the loop momentum p in this expression is unrestricted
in range, we see that this integral will be quadratically divergent. We must
interpret the theory as having a cut-off for the momentum integration, p? <
A%, We can evaluate the integral easily with this cut-off. Notice that the
integral is spherically symmetric in four-dimensional p-space and so can be
evaluated using spherical coordinates in p-space. We then find

A2
1 _ 12/\/ $ / a Lo
Iy = Tor2 |, d85+m2 d:102¢> (x)
3\ 9 9 A? PR
e [/1 m*log (1—|— — /d x 245 (x) (9.9)

where we have used the fact that

/ d*p = 2n%pPdp = 725 ds (9.10)
angles

with s = p2.
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We now have to include this term in I" and identify dm?2. This will be
done after evaluating the correction to the four-point vertex also.

The one-loop correction to the p*-interaction can be represented by the
Feynman diagram shown in figure 9.2. The mathematical expression for the
this diagram must have two powers of A and two Wick contractions. The
relevant term in F[p] is then

2342
A =N 5 [3655 [ 5655 o [¢'@ [#o

270000 | 270000
—NOV [ PGP ) (0.11)
z,y
\\\ // \\\///
» «
//\ ,I\\

Fig 9.2. One-loop correction to ¢*-interaction

Once again, we will get one power of i from each of the propagators and so,
as before, we can set Z; = 1, Z3 ~ 1, §m? ~ 0 in evaluating this.

Using (9.7) for the propagators with Z; ~ Z3 ~ 1, ém? ~ 0, and with a
change of variables, we get

1" = [atedty @) Viey) ) (9.12)
where
d4k ik-(x—
Vi) = [ Goe e viE)

d*p 1
2m)* (p* +m?)[(k —p)* +m?]

V(k) = —(6))? / (9.13)
The behaviour of the integrand at large p shows that this integral is logarith-
mically divergent. We evaluate V (k) with a cut-off A as before. By using the
Feynman integral representation

1 ! 1
AB _/0 WA o)+ BoP (9:.14)

we can combine the denominators of the two propagators to get



138 9 Renormalization

B d*p ! 1
V0 == | o | e e

9 d*p ! 1
=0 [ <27r>4/o (R e s R )

By a shift of variables p — p+ kv, we see that the integral will be spherically
symmetric in the four-dimensional p-space. The corrections due to the change
of the limits of integration will be negligible if the momentum k is small
compared to A. In this case we have

2 ,l A?
(6)\)2/ dv/ ds 2 - 212
1672 J, o [s + k20(1 — v) + m?]
2

We have used (9.10) again. Since we have a parameter with the dimensions
of mass in the theory, it is convenient to split the logarithm and write this as

9x2 [t k2v(1 —v)

o) = -2 e () - o)

V(k) = -

m?

We now turn to the choice of the renormalization constants. The effec-
tive action, with the one-loop corrections to the ®?-vertex and the ®*-vertex
included is

1 1
I= /23 [5(845)2 +=(m? - 5m2)¢2} + ZM/@“ + a4 ar 4.

2
(9.18)
The term which corresponds to the $2-vertex is given, to first order in 7,
by

Iy = / B(a@? + %mQSPQ] +hz{V / B(a@? + %mQQQ]

3\ A2 1
C(sn2Y(1) 2N | 422 a7 152
—I—h{ (6m*) +47r2 {A mlog(1+m2>]}/2¢
(9.19)

The requirement that the normalization of the kinetic energy term should be
1 gives Zg(l) = 0. The mass is given by m? if we choose

2
(6m2)M) = f—; {AZ —m?log <1 + %)] (9.20)

The ®#2-term in the effective action is then
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1
Iy = /5 [(09)* + m*®?] (9.21)
The term which corresponds to the $*-vertex reads, to first order in A,
Iy = A/qs4 h (AZ{” + V(O)) /@4
[ | [ e vw] e
2,y (2m)*
. 9A2 [t k*v(1 —v)

V*(k) = [m/o dv log (1 + T)] (9.22)

The basic strategy of renormalization is to choose Z£1) such that the A-
dependence of the effective action is canceled out. In the present case, we can

choose )\Zfl) + V(0) = 0. The &*-term of the effective action is thus

Iy = )\/@4 +h/m % (x) [/ %eik“y) V*(k)] &*(y)  (9.23)

The A-dependence is eliminated by choosing the renormalization constant Z;

to first order in h as
2
Zy =1+ T“LE [log <A > - 1} (9.24)

472 m2

With this choice, the &*-term of the effective action can be written as

I, = /V(x1,x2,:Eg,174)915(3:1)@(1:2)@(3:3)@(3;4)
V(w1 20, 23, 24) = /H é:“);
Vilk) = A + {9_/\2 /Oldv log (1 n (k1 +k2)22v(1 —v))]

472 m

efrr 2m) oW (> ki) Va(k:)

(9.25)

We kept factors of i up to this point to see how the renormalization constants
cancel out the A-dependence in a systematic expansion. From now & will be
set to 1 again.

There are certain ambiguities in the way we have separated out the A-
dependent part and the “finite” part (the part which is finite as A — o0).
For example, we could split the logarithm in (9.17) using an arbitrary mass
scale u to obtain

9A2 [t m?  k?v(l — v))

V(k)=V(0) + 7 dv log (F—i- 2

V(0) = —Z—iz [log <ﬁ—§) - 1} 4 (9.26)
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We also have a similar ambiguity in choosing Z1; for example, we could choose
AZMY 4 V(0) = e, The resulting V*(k) and Z; would be

9x2 ot m?  k2v(l —v)
V*(k) =-— dv 1 — + ——
") =4 0 vog(u2+ p )
9\ A?

Notice that ¢ can actually be absorbed into the definition of i, so that there
is only a one-parameter ambiguity corresponding to u. The u-dependence
of V*(k), after eliminating Zl(l) and V(0), has to do with the meaning
of the renormalized coupling constant. The coupling constant is a way of
parametrizing the strength of the interaction and has to be determined via
some scattering experiment. What is measured is the scattering amplitude
at some momenta for the incoming particles. We can pick one value of these
momenta and define the corresponding amplitude as the coupling constant.
The scattering amplitudes at other momenta are then parametrized by this
constant. Because of this u-dependence, strictly speaking, we must write A(u)
for the renormalized coupling constant. In our first way of defining the renor-
malization constant via equations (9.22, 9.23, 9.24), which corresponds to the
special choice p = m, we see that V*(k) — 0 as k — 0. As a result, for the
four-point vertex Vj, we find

V4(k15k27k3;k4) = (928)

=

We can identify A as the value of the four-point vertex function (or the four-
particle scattering amplitude, apart from trivial kinematical factors) when
the momenta of the particles involved goes to zero. This is the A we have
used in the action; it can be further specified as A(m). In our second way of
defining Z7, we find

92 m?
V4(1€1) k=0 = + m log (F)
= Mp) (9.29)

We see that the second choice corresponds to a different definition of the
coupling constant. Physical quantities will be independent of this ambiguity.
This is easily seen in the present case by writing the various expressions in
terms of the physical amplitudes at chosen momenta. First we write V*(k)

as
9Nzt m?  k2v(l —v)
VEk) = 2 [ do log (T8 4 EUE Y
®) 47T2/0 vog<u2+ p? )

92 m? 9AZ [t k2v(1 —v)
= —1 — — dv 1 1+ —F= .
s og < e > + 12 /0 v log < + 2 > (9.30)
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We can then write Vj as

Va(k:) = Via(0) + Wa(0)° /1 dv log <1 + M) +.- (9.31)
0 m

A2 2

where V4(0) denotes Vi (k;) at zero momentum for the particles involved and
k = k1 + ko. We have eliminated A in favor of V4(0), to the order we have
calculated. Equation (9.31) expresses the true prediction of the theory, giving
Va(k;) in terms of its value at some fixed choice of momenta, k; = 0 in this
case. In a massive theory, u = m is a natural and convenient choice and we
shall use this for the ¢*-theory from now on.

It is interesting to examine the low- and high-energy behavior of the
effective action. By momentum conservation at the vertex, k = ki + k2, so
that, for low-energy processes, we can consider the expansion of V*(k) in
powers of k/m. We find

32 2

872 m?

V* (k) (9.32)
This shows that the first correction to the low-energy result, expressed in
coordinate space, is a term of the form (8,¢?)(9"¢?).

In the high energy limit we find

9\? k2
V*(k) ~ yps) log (W) (9.33)
The corresponding scattering amplitude increases logarithmically with k2.

The calculations given above illustrate the renormalization procedure.
We see that, at least as far as the ®2- and &*-vertices are concerned, all
A-dependence has completely disappeared and we have well-defined one-loop
corrections in terms of the experimentally measured parameters. To complete
the renormalization procedure to the one-loop order, we must consider higher
vertices also, for example, the $6-vertex given by the diagram

Fig 9.3. One-loop correction to the 6-point vertex function
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In this case we have three propagators and one loop momentum p, so that
the integral at large p has the form

1
I~ /d‘*pF (9.34)
There is no divergence at large A; the result is finite plus terms which are
of order % Vertices with higher number of @’s are also finite as A becomes
arbitrarily large. These vertices can all be calculated without additional re-
strictions or without introducing new renormalization constants. (Such ver-
tices give further unambiguous and testable predictions about various types
of processes.) We have thus carried out the renormalization of the theory to
one-loop order.
The renormalization constant Z3 is equal to 1 up to one-loop order. The
correction to Z3 starts at the two-loop order and arises from the diagram

e N
4 \

/ \
_____ ‘._____.._____
\ /

N /
~ e

Fig 9.4. Two-loop correction to two-point function

This can also give two-loop mass corrections. There are also two-loop correc-
tions to the @*-vertex from diagrams such as those in figure 9.5.
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Fig 9.5. Two-loop corrections to the 4-point vertex function

We will not do a systematic calculation of the renormalization constants to

two-loop order but will calculate Z§2) to illustrate how this can arise. The
@2-term corresponding to the two-loop diagram given is

1 = [ (@) Via) o)

V(z,y) = —48\2G?(x,y)
_ / %eik'@y) V(k)
d'p d*q 1
2m)* (2m)* (p2 +m?)(¢? + m?)[(p + g — k) + m?]
(9.35)

V(k) = —48)\2/(

The evaluation of the integral is rather involved, but the leading A-dependent
term, which is the term relevant for Z3, can be obtained without difficulty.
The result is

AQ

m?2

3\

F2(2) _1 0P(x) [— log (

@) ()
2Jey 1674 )5 (z —y) — F(z,y)| 02(y)

d4k ik 3)\2 kz
— ik-(z—y) A
Fle.y) / (27T)4e {167r4 log (mQ)] (5:36)

The terms in I which are of order 2 and involve two powers of & are
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Iy = Z§2>l [(00)? + m?¢?]

/ 9d(x [136’\24 (i—i) 5<4)(:v—y)—F(w,y)] 09(y) +
(9.37)

There are also two-loop corrections to the mass which we have not displayed
above. From the coefficient of the term 3(9®)?, we see that the choice of Z3
which gives a A-independent I is

32 A?
Zs=1-— 16410g< ) +- (9.38)

9.3 The renormalized effective potential

In the last chapter, we calculated the one-loop correction to the effective
potential. The effective action, with this term added, was

I = /23 B(&@)Q + l(m2 - 5m2)4'>2] + Z1 2t + F(D)

2
1 4
F@) =g [da

2 2
24\P? (A2 + mT - mT log (442 /m2)>

+(1200%)? G - %10g(4/12/m2)>

1 12082
+=(m? +12X8%)% log | 1 + A
2 m2

(9.39)

We have put in the Z-factors and m?. Renormalization can now be carried
out by choosing these constants to cancel the potential divergences. When
this is done, we get the Coleman-Weinberg potential as

I = / [%(84’))2 + %m2¢2 + /\434]

+6417T2 [(m2 + 12)8°)? log (1 + 12Afz) — 122m*®* — 216A*®*
(9.40)
where
2 _ 3\ o, M m? 27,2
dm® = 33 (/1 +7—710g(4/1 /m )> +

9N

Zy=1-—= <1 - 11og(4/12/m?)> + - (9.41)
2 2
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These renormalization constants differ from the set (9.20), (9.24) because
of differences of regularization; notice, however, that the leading divergent
terms have the same coefficients in (9.41), (9.20) and (9.24).

9.4 Power-counting rules

The renormalization procedure requires the introduction of the renormaliza-
tion constants and then choosing them appropriately. Some of the questions
which naturally arise at this stage are the following. Which terms or Feynman
diagrams are potentially divergent and need regularization? How many renor-
malization constants do we need? How do we extend the one-loop procedure
systematically to higher loops? The answer to these questions will require a
more systematic analysis of the possible divergences of Feynman diagrams.
Divergences arise from loop integrations. Propagators, since they behave like
1/k? for bosons at high momenta and 1/k for fermions, can improve the con-
vergence of the integral. We define the superficial degree of divergence § of a
1PI-Feynman diagram with loop integrations as the number of positive pow-
ers of loop momenta minus the number of negative powers of loop momenta.
In other words, each loop integration contributes +4 to J; each propagator
which carries a loop-momentum variable gives —2 if it is a bosonic propagator
and —1 if it is a fermionic propagator. The superficial degree of divergence
gives the highest powers of A which can arise from the evaluation of the inte-
gral with a cut-off A. It tells us which diagrams are potentially divergent. For
a general Feynman diagram, for the @*-interaction, let Ep be the number of
(bosonic) external lines and Ip be the number of (bosonic) internal lines. If
V' denotes the number of vertices, since each vertex has valency 4, we have
Ep =4V — 2Ig. With £ for each propagator and 1/% for each vertex, the
number of powers of A which must be equal to the number of loops L is given
by L —1 = Ig — V. For a one-particle irreducible diagram, ¢ is given by
4L — 21 so that

§=4(Ig -V +1)—2Ig=4— Ep (9.42)

¢ is determined by the number of external lines only and so there are only
a finite number of diagrams at a given loop order which can be potentially
divergent, namely, diagrams with Ep < 4. Corrections to the p?-term have
0 = 2 since there are two external lines. The leading divergence is a quadratic
divergence. There can be a subleading divergence which is logarithmic and
which must carry two powers of external momenta for dimensional reasons.
This would correspond to a contribution like (9¢)? appearing with a coeffi-
cient which behaves like log A. We will therefore need a renormalization of
the field as well as a mass renormalization. Corrections to ¢* have § = 0
corresponding to a logarithmic divergence and will need an additional renor-
malization constant corresponding to coupling constant renormalization. In
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this theory we will not need any further renormalizations, since this exhausts
all possible cases of § > 0. (Since the theory has symmetry under ¢ — —p,
terms odd in ¢ do not appear in the perturbation theory.)

The superficial degree of divergence § can be related to the dimension of
the corresponding monomial of fields. We assign a dimension to the field ¢.
The action has to be dimensionless because, among other reasons, it is in
the exponent of the functional integral. Since the kinetic term is [ d*z(dy)?,
assigning a mass dimension of —1 to the coordinate x and requiring that the
action be dimensionless, we find that the dimension of ¢ must be 1. The di-
mensions of the coupling constants are determined from this so that all terms
in the action remain dimensionless. (Equivalently, the Lagrangian must have
dimension equal to 4.) The effective action is also dimensionless and we can
use this to determine the dimensions of the coefficients of various possible
terms in I'. Thus, for example, the term f d*z ©? has dimension —2; the
coefficient must have dimension 2. Since all other dimensionful parameters
can be ignored compared to the cut-off A, we can conclude that the coef-
ficient of this term must go like A2. In other words, we expect a quadratic
divergence for this term. Similarly, for the term [(dp)? the coefficient must
be dimensionless; it has to be a logarithmic divergence. The coefficient of the
¢*-term can have logarithmic divergences by the same reasoning. Notice that
in all these cases, J is essentially 4 minus the dimension of the number of ¢’s
involved.

While it can help to identify the potential divergences and the kind of
renormalizations needed, the superficial degree of divergence is not the whole
story. The actual degree of divergence may be different. A superficially con-
vergent diagram may have subdivergences as in the following case, fig 9.6.

Fig 9.6. A two-loop correction to 6-point vertex function

One may also get entanglement or overlap of loop-integrations. It may happen
that for one of the loop-integrations, the other loop momenta are to be treated
as external momenta. Then, depending on how the loop-integration is done,
the degree of divergence for the next set of loop-integrations may be different.
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The way to deal with this in perturbation theory is to develop a systematic
recursive procedure, based on the power-counting rules, with a subtraction
procedure for separating out and eliminating the divergences. We shall take
up this question later, after we consider the one-loop renormalization of QED.

9.5 One-loop renormalization of QED

The Euclidean action for QED was given in (8.58) as

Se(4.5,0) = [ d'e 10,40, + 8- @ ied) +m) ]

:/d4x {%FWFW—F%(3~A)2+1/;(V~(8—ieA)+m)1/)}

(9.43)

The free part of the action shows that ¢ and 1) are fields of dimension %, while
the photon field has dimension 1. The interaction Lagrangian is of dimension
4; e has no dimension. L;,; shows that there are two fermions and one photon
line at each vertex. For a Feynman diagram with Er external fermion lines,
Ep external photon lines, I fermion internal lines or propagators, /g photon
propagators and V' vertices, we have

Ep =2(V —1Ip)
Ep =V —-2Ip
L-—1=Ip+Ip-V (9.44)

The superficial degree of divergence is given by
0 =4L —Ip —2Ip
3
=4 — §EF — Fp (9.45)

Notice that § is again 4 minus the dimension of the fields involved.
The potentially divergent diagrams, which correspond to § > 0, are thus
the following.

1)0=4,Er =Ep=0.

These purely vacuum diagrams will be canceled by the normalization of
the functional integral or equivalently by the requirement that (0]0) = 1.
(If we have a nontrivial background such as a gravitational field, diagrams
with no external lines can be important. The relative vacuum contribution of
different backgrounds is what is relevant and this is obtained by comparison
of the vacuum diagrams with the backgrounds involved.)
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2)§=3Ep=0, Eg=1

Diagrams with an odd number of external photon lines will vanish due
to the charge conjugation invariance of QED; we shall discuss this symmetry
later.

3)§=2Ep =0, Eg =2

These correspond to corrections to the photon propagator and are called
vacuum polarization diagrams (or photon self-energy diagrams). Naively, the
degree of divergence is 2, suggesting a quadratic divergence. A local pho-
ton mass term of the form A,(x)A*(x) is not allowed by a combination of
Lorentz invariance and gauge invariance. As a result, if we use a regulator
which is gauge- and Lorentz-invariant, there will be no quadratic divergence.
The lowest-dimension term which is gauge- and Lorentz-invariant is F,, F'*",
which is of dimension 4. The coefficient being dimensionless, we expect only
a logarithmic divergence for the vacuum polarization.

Although the (9 - A)?-term breaks gauge invariance, these diagrams have
fermion loops and, since the fermion part of the action has gauge invariance,
a gauge-invariant regulator can be used.

4)§=1,Ep =0, Eg=3

These diagrams vanish by charge conjugation invariance.

5)§=1,Ep =2, Eg=0

These correspond to corrections to the fermion propagator and are called
fermion self-energy diagrams. Naively, they are linearly divergent. But ac-
tually, because of the properties of Dirac y-matrices, the divergence is only
logarithmic. The theory with zero mass has a symmetry, the so-called chiral
symmetry. The linear divergence, which would correspond to a mass term
Y(x)1(z), has to be zero to respect this symmetry. As a result, even in the
massive theory, this term has to have a factor of m in its coefficient. The
remainder is of zero dimension or at most a logarithmic divergence.

6)5=0,Ep=0, Eg=4

This describes photon-photon scattering; the corresponding lowest-dimension
monomial in the effective action is A, A" A, A”. Such a term is disallowed by
gauge invariance, the lowest allowed term has four factors of F},,, giving a di-
mension equal to 8. The coefficient has dimension —4, and hence this diagram
is convergent if evaluated in a gauge-invariant manner.

7)6=0,Ep=2, Eg=1

These correspond to corrections to the basic vertex 61/_)’}/'“1/}14# and are
called vertex corrections and ultimately are part of the charge renormaliza-
tion. The divergence is logarithmic.

The discussion given above shows that there are three types of diagrams,
namely, the photon and fermion self-energy diagrams and the vertex correc-
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tion diagrams, which we must consider to work out the renormalization of
QED. The photon self-energy correction can lead to a term like F},, F'*¥ in
the effective action with a logarithmically divergent coeflicient. The fermion
self-energy can give terms like matp and ¥y - O, both with logarithmically
divergent coefficients. The vertex correction is again logarithmically divergent
and gives a term of the form 1/77“1/1/1#. We will need to introduce renormal-
ization constants corresponding to these monomials. Since they are of the
form of the terms in the action, this amounts to modifying the coefficients of
the terms in the Lagrangian.

Interpreting the parameters in (9.43) as the bare parameters, we can
rewrite it, in terms of the renormalized parameters, as

Z3

SE(A,zZ,@b):/d‘*x IFHVF‘“’—F%(3-A)2+Zgz/;(7-8+m—6m)w

—ieZ1py P A, (9.46)
The renormalization constants Z1, Zs, Z3, A, dm have the hi-expansion
Zi=1 + ihin@)
1
A=1 + i READ)
1
om = i hE(6m)®) (9.47)
1

fori=1,2,3.

We now turn to the calculation of these constants to the first order in
h. This requires the evaluation of the one-loop contributions to the elec-
tron (fermion) self-energy, the vacuum polarization and the vertex correction.
(Once again, /i will be set to 1 in what follows, the terms of the same order
in 7 will be collected together in the effective action.)

Electron self — energy

The electron self-energy diagram is given by
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i

Fig 9.7. Electron self-energy

The corresponding contribution to I is given by

e 'k dp 1 1
Fu?l /d4 d'y (27T)4( A e —21/’( )Y ()

/ O(x Y)Y () (9.48)

where
d4p ip-(x—
S(z,y) —/—(%)4 P Y 52 (p)
d*k 1 1
Ep)=¢ | =5 V' ———— 4
(p) =e /(27r)4 k2 [Fy m—l—m-(p—k)w (9.49)

We have set Z; = 1, A=~ 1, dm = 0 in the propagators and vertices in (9.49)
since this is adequate to the order we are calculating. Combining denomina-
tors using the formula (9.14) and making a shift of the variable of integration,

we find
2m(1 4+ v)
_e/dv/ [¢? + p*v(1 — v) +m?v]?
. 2(1 —v)
+(m+z’7~p) [q2+pzv(1—v)+m20]2‘|
(9.50)

(As before, the change of the limits of integration gives a negligible correction
if the cut-off A is very large compared to the momenta p.) The integral can
be explicitly evaluated as

d*q 1 1 A?
= 1 — | = (1+21
/ (2m)% [q2 + p2v(1l —v) + m2v]2 1672 log (mQ) (1+2logo)

m?2v?
1
+log (m2v2 + K v(l - v))

(9.51)
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where K = p? + m?2. The self-energy contribution is now

E(p)=21 + (m-l—i’}/-p)zz + X*
A2

47 m? 27
o A2 o
Yo =|—1 —
2 [47T ©8 (m2> + 27
1 2,2
. am m?v® + K v(1 —v)
b)) =5 ; dv(l—i—v)log( P )

1 2,2 —_
0

2

m2v2

151

(9.52)

where o = €2 /4. (It is the fine-structure constant.) Notice that K, continued
to Minkowski space, will vanish for free electrons of mass m; the last term
27 will thus vanish for free electrons. The contribution to I" can be written

as

I = [[5ds + 5 b0+ m+ [ BT ) (059)

Vacuum polarization

The vacuum polarization or photon self-energy is given by the diagram

Fig 9.8. Vacuum polarization or photon self-energy

The corresponding mathematical expression is

1 1 v
Lia=5 | A@)u(ey)A(y)
x,Y
d4k ik-(x—
Ty = [ Ggaye €7 Mt

_ 2 [ A Trhu(m—iy-(p+ k) (m —iv-p)]
(k) = ¢ [ e o]

(9.54)
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The main difficulty in evaluating this expression is the question of the cut-
off. The leading, A-dependent term in I'44 behaves like A2A*(z)A,(z), a
gauge-noninvariant mass like term for the photon. The reason for this is that
a cut-off for the range of momentum integration is not gauge-invariant. One
possibility is to introduce a gauge-invariant regulator which is a little more
sophisticated than just a cut-off for the range of momentum. Dimensional reg-
ularization is one such regulator where the theory is first defined in spacetime
dimension 4 — €, € < 1, by analytic continuation. This isolates the potential
divergences as poles in e. The limit ¢ — 0 may be taken after the poles have
been canceled by choice of the renormalization constants. This technique pre-
serves gauge-invariance at all stages. Another, more simple-minded approach
is to introduce one more renormalization constant, adding a term £54%A? to
the starting Lagrangian. A cut-off procedure can then be used, keeping the
A% A%-term generated by the vacuum polarization. At the end, we choose 612
so as to have gauge-invariance for I'. In effect, this amounts to dropping the
gauge-noninvariant part of I7,,, in (9.54). We shall follow this approach here.
(Since fermion action is gauge-invariant, it is completely consistent to require
gauge invariance in the evaluation of this diagram.)

Gauge-invariance requires invariance under A, — A, + 0,0, where 6 is
an arbitrary function of the spacetime variables. If IT,,,, obeys k*11,,, (k) = 0,
in other words, if it is transverse to k*, this symmetry holds for the vacuum
polarization contribution. We shall therefore separate out the transverse part
of I1,,, and set the nontransverse part to zero and then use a cut-off to eval-
uate the integral. Taking the trace of the y-matrices in (9.54) and combining
the denominators, we can write

(k) 202 /1 J / dtq (m*+ 1¢*)0, +v(1 — v)(2k.ky — k6,)
v = —4e v
K 0 (2m)4 [¢%2 +m?2 + k2v(1 — v)]?

(9.55)

where ¢ = p+kv and we have done a shift of the variable of integration. Terms
odd in ¢ have been dropped since they give zero upon angular integration.
We have also used the fact that the integral of g,q, is proportional to d,.,
i.e.,

d*q é dq
F(¢*) quqn = £~ F(g*)¢? 9.56
/ o) (¢°) auq 1] n) (¢7)a (9.56)
for a function of ¢®. The transverse part of I, is given by
kKB I,5
1}, (k) = I, — 5#1’T
1 4
d*q v(l —v)
= (K6, — kyuky 82/ d/
(0w = huk) 8¢ |40 | omyi (@ + Ru(1 = )2

(9.57)

The evaluation of the integral is now straightforward and gives
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15, (k) =(k*6, — kuky) l% <10g <i—22) - 1)

_ 2, v(1 = v)log (1+1€2L2_”))]

™ 0 m
(9.58)
Using this expression, we find the contribution to I" as
(1) 1 v « A2
= o () )
1 dik
z F,, ik-(z=vy) I (k) | v
w1 B | [ g ] P
(9.59)
where . 2, )
2« kv(l —wv
mnmk)y=-—— d 1—v) 1 1+ ————= 9.60
0 =2 [Cavo-v tog (1420 20) 000)

The vertex correction

The vertex correction is described by the diagram shown in figure 9.9.
The contribution to I' may be written as

1, = =ie [ @)@ 204" 00)

d'p d'p ip-x_—ip' -y —i(p—p')-z
F#(I,Z’y)_/(%r)‘l (27r)4ep e~y o—i(p—p) Lu(p,p)

n_ d*k valm —iy - (p = K)yulm —iv- (' = k)]y
Fu(pvp ) = —62/ (2m)* k2[(p — k)2 + m2][(p' — k)2 + m?]

o

(9.61)

Fig 9.9. One-loop vertex correction
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We will evaluate only the leading A-dependent term in (9.61). For this, since
the high k-values are the important regime, the external momenta p, p’ can
be taken to be small compared to k. We then find

'k Yoy - Ry -k
2 a n
I~e /(27T)4 I (9.62)

The algebra of the Dirac y-matrices gives voy - kyuy - kv = 27Hk2—4kuk,,7”.
Further, since the integral involves only k2, we can use (9.56). Equation (9.62)
for I, now becomes

. , / d'k L,
= e e
= 2m)* (k2 + m?)?2
@ A2
= g [log(m> ‘1} o
/12
~ Y —log (—) T (9.63)
The A-dependent part of the 1 Arp-vertex in I' is thus
O e [ ian [P rog (A
F&Aw = ze/ww Ay [47T log (mz)] (9.64)

We are now in a position to collect the results together. The effective
action, to first order in A, can be written as

F:/iFWFW—I—%(8~A)2+1/;(”y-3+m)1/)—ie1/_ry“1/)A#

1 «@ A2 1
1 uv | (1) _ MZ(H. A)?
/+4FWF {Zg +3- (log (m2) 1>} + A 2(8 A)

20 ¢ o (N £ 2] s
+ _ZQ + i log (m2) + %] (v 0+ m)yp
[ 3am A2 am] -
_ (1) _ 2270, Z )=
_5m ir 8 <m2> 27 } vy
r 2
(1, © AN e
- _Z1 T log (W)} iepy P A,
+ A — independent terms + - -- (9.65)

The A-dependent terms are absorbed into the definition of the physical pa-
rameters if we choose the renormalization constants as

o A?
Zl:l_EIOg(W)—’“”

Q A? «
Zo=1-Llog () - &
2 47T0g(m2) 27r+
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@ A2

3am A2 am
m=——log| — | +—-—+
m

Z3

47
A=1+--- (9.66)

where the ellipsis stand for terms of order A%. The resulting I', to first order
in i, is given by

I = / GFWFW + %(a AP+ (v 0+ m)p — ier“d;A#)

+/¢2*w+i/FMUH*FW —ie/iﬁF:A“z/J—i—--- (9.67)

where X* is given in (9.52), II* is given in (9.60), and I, denotes the fi-
nite, A-independent term of I, of (9.61). We have not explicitly calculated
I’} here, but it does appear in I'. There are also all the one-particle irre-
ducible vertices with more external particles which we have not calculated.
They are convergent as A — oo and do not affect the determination of the
renormalization constants.

The finite corrections X* and IT* vanish when the fields obey the free
field equations of motion with the correct masses; i.e., when iy -p+m =0
for the electron and k2 = 0 for the photon. These corrections do not affect
the propagation of the free particles, in the perturbative expansion we are
using. For a bound electron, the correction need not vanish and indeed gives
a measurable effect, the Lamb shift, for example.

Notice also that, to the order that we have calculated,

Zy = Zs (9.68)

We have only calculated the dominant A-dependent part for the vertex cor-
rection, so the comparison can only be made with the A-dependent part of Z5.
The relation (9.68) is a consequence of gauge invariance and is an example of
a Ward-Takahashi (WT) identity. It gives gauge invariance for gauge trans-
formations involving the physical (renormalized) charge e. Equation (9.68)
and other related identities will be derived later.

More on vacuum polarization

We shall now consider the simplification of the finite correction (9.60) to
photon propagation, the vacuum polarization effect. First consider the case
of very large values of k2, i.e., k2 > m?. In this case, we can approximate
II* as )

Q@ k
(k) ~ ——1log | — 9.69
()~ tog 25 (9.69)
By solving the equations of motion for I" with an external current J,, we see
that the interaction is given by
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DY (k) = k? [1 - ?% log (Z—Zﬂ (9.70)

We see that the interaction is effectively stronger at high values of k2, or at
short distances. Vacuum polarization is thus a screening effect, the interaction
at large separations is weaker. We also see that the true expansion parameter
for QED is alog(k?/m?) and not just a. The formula (9.70) actually shows a
pole for D(k) at k? = m? exp(3w/c). This is known as a Landau pole. Clearly,
perturbation theory will cease to be valid before one gets to these energies,
so one cannot conclude anything definite about the pole from the calculation
we have done. The pole is at best indicative of the fact that pertubative
QED must be considered as an effective theory valid only for energy scales
far below this value.

The result (9.70) can also be expressed as aD(k) = a.rr(k)/k? by defining
an effective k-dependent charge

a
1 — 5= log (k2/m2)

cuer (k) = (9.71)
Consider now the low energy limit of vacuum polarization. This would
be important for atomic systems, where the typical value of k is in the
electron-volt range which is much smaller than the mass of the electron
(me =~ 0.51MeV). Expanding the logarithm in IT*, we find
1 1 @

+ —— +0(a?) (9.72)

D(k) = ~ —
(k) k21— (ak?/15mm?2)] k2 157wm?

The interaction between two charges is modified by the second term. For

example, the electrostatic interaction between an electron and an atomic
nucleus of charge Ze is now given by

1 o

V(r)=—-Ze* |~ +

r 157mm?2

5O (r) (9.73)

The correction term to the standard Coulomb term is known as the Uehling
potential. It gives a shift to the atomic energy levels; it contributes —27M H z
to the Lamb shift in Hydrogen and is thus a measurable effect.

Lamb shift

The 251 — 2Py splitting of the energy levels of Hydrogen-like atoms is

2 2
known as the Lamb shift. For the case of Hydrogen, two recent experimental
values, due to Lundeen and Pipkin (LP) and Andrews and Newton (AN), are

E(251) — E(2P1) = 1057.893 + 0.020M Hz  (LP)
2 2
=1057.862+ 0.020MHz (AN) (9.74)



9.6 Renormalization to higher orders 157

Theoretically, there are many contributions to this effect. The major contri-
bution is from electron self-energy. While the finite correction X* vanishes
for a free particle, X*(bound), calculated with bound-state propagators is
not zero, and leads to shifts in the energy levels of a bound system. Calcu-
lating this self-energy correction to order a? and including other effects due
to the anomalous magnetic moment of the electron, the finite size of the nu-
cleus, nuclear recoil effects and the Uehling correction discussed above, the
theoretical prediction becomes

E(251) — E(2P1) = 1057.864 4 0.014M H 2 (9.75)
2 2

This excellent agreement between theory and experiment may be taken as a
confirmation of the self-energy and vacuum polarization effects.

Anomalous magnetic moment of the electron

The finite part of the vertex correction, which we have not calculated, pre-
dicts an anomalous magnetic moment for the electron. This can be obtained
by isolating the term proportional to [y, v, |(p—p')” in (9.61) and evaluating
it in the limit of low external momentum. The result can be expressed as a
term J’[%u Y|t F* in the effective action. This is like a magnetic moment
interaction and one can express this as a shift of the gyromagnetic ratio of
the electron, g — 2(1 + a/27). In other words, the theory predicts that the
gyromagnetic ratio of the electron should be different from the value 2 which
is given by the one-particle Dirac equation; the electron has an anomalous
magnetic moment. Including higher-order (upto O(a?)) contributions, the
result is

-2
QT = (1 159 652 140(5.3)(4.1)(27.1)) x 10~ *2 (theory)
= (1 159 652 188.4(4.3) £ 200) x 1012 (experiment)
(9.76)

The numbers in brackets indicate the uncertainties, due to various sources, in
the last decimal places.) This is one of the most accurately tested predictions
of quantum electrodynamics.

9.6 Renormalization to higher orders

The one-loop calculations we have done so far show that if we start with the
action of (9.46), namely,

Z3

SE(A,zZ,@b):/d‘*x IFHVF‘“’—F%(3-A)2+Zgz/;(7-8+m—6m)w

—ieZ1py P ALl (9.77)
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and if we choose the renormalization constants as given in (9.66), then the
effective action I" is independent of the cut-off A when A becomes very large
compared to the momenta involved. This is the renormalization procedure to
one-loop order. We shall now discuss how this procedure can be extended to
higher orders in A.

It is convenient to rewrite the above action in the form

SE(AM/;ﬂﬁ) = Scl(AﬂEudj) + SC(Av/lLud]) (978)

Su(Ab. v dho | SEw B 4 50 AP+ D00+ m)w — ielyvA,

Zs—1 A—1
34 Fu P + =5—=(0 - A)°

+(Za = )Y (v - 0+ m) ) — Zadmipy)

—ie(Zy — V)i v A, (9.79)

Sc is the sum of the so-called counterterms. The counterterms have coeffi-
cients which depend on A and are canceled out in the effective action by the
loop corrections.

As we have seen, for the calculation of the corrections at the L-th loop
order, we need the renormalization constants (or counterterms) only to one
order less in h, namely, to order KL The calculated loop corrections at
the L-th order can then be used to fix the renormalization constants to the
L-th order, and these in turn can be used for the next-order calculations. In
other words, one can recursively carry through the renormalization procedure.
The integrands are to be expanded in powers of the external momenta or
combinations of these such as the mass-shell quantities like p? + m? and
i7y-p+m. The first few terms, up to and including the power corresponding to
4, the superficial degree of divergence, can have A-dependence. The remainder
will be finite as A becomes very large.

There is another, related way of viewing this procedure. We can use just
the action S, of (9.79) with no counterterms, and then, instead of potential
divergences being canceled by counterterms, we can equivalently give a pro-
cedure to define a new integrand, the so-called renormalized integrand, which
can be used for the loop calculations. The renormalized integrand is defined
so that there will be no further divergences when the loop integrals are done.
In other words, given the integrand Zg for a 1PI Feynman diagram G, which
is constructed from S.;, we replace Zg by a renormalized integrand Rg and
then do the loop integrals. We then have to give a method of writing down
Rg given Zg. This will involve subtracting certain terms from Z¢g; in com-
parison with the counterterm approach, the terms which are subtracted may
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be viewed as the conribution of the counterterms. This approach to renor-
malization is usually called the BPHZ method, after Bogoliubov, Parasiuk,
Hepp and Zimmerman.

The Feynman diagram G may have subdiagrams which are divergent,
even if G is superficially convergent. We have seen an example of this at the
end of section 9.4 for the scalar field theory. (In the counterterm approach,
some of the subdivergences are canceled by the lower-order counterterms.)
Consider a particular term in I" with a specific monomial of fields. Let Rg
be the corresponding integrand at a given loop order obtained by including
the subtractions due to all lower-order subdivergences. Since subdivergences
are subtracted out, the only possibility of divergence in using R is from the
whole diagram, namely, only if g > 0. Therefore, if ¢ < 0, we define the
renormalized intergrand R¢g as

Rg = RG, 5G <0 (9.80)

and if §¢ > 0, we make a Taylor expansion in powers of the external momenta
(or mass-shell quantities) and define

Ra = RG — TgRG =(1-T¢g) Rg, 0g >0 (9.81)

T is the Taylor expansion of Rg in powers of external momenta (or mass-
shell quantities) up to and including the order dg. (In comparison with
the counterterm approach, TgR¢ gives the renormalization constants or the
counterterms corresponding to the order of the calculation.)

We must now give the construction of Rg from Zg. Suppose Zg has a
divergent subdiagram . We can then write Zg = Zg/, Z,. The contribution
of the counterterms is —T R, for v, so for G we get Z,,(—T, R,). Suppose
71, 72 are disjoint subdiagrams with renormalizations. (The diagrams are
disjoint if they have no common line or vertex.) In this case, we can isolate
the potential divergences as

IG/{71172}(_T71R71)(_T’YQR’YQ) (9.82)

If the subdiagrams are not disjoint, we cannot write the counterterm
contribution as above. For example, for the diagram in figure 9.10 we will
have Zi-counterterm contributions or lower-order subtractions of the type
shown in figure 9.11. The X’s in the diagrams in figure 9.11 denote the one-
loop vertex counterterms. The mathematical expression corresponding to this

is of the form 7T, R, + T, R,,, where 71, 72 are as shown in the diagram
9.12 below. This subtraction is clearly not of the form (9.82).
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Fig 9.10. A two-loop correction to vacuum polarization

o pwr o ooy

Fig 9.11. Z; counterterm contributions in calculating vacuum polarization
to O(h?)

We can continue the series (9.82) to all disjoint subdiagrams. Once all lower-
order subdivergences are subtracted out in this way, we get Rg. Thus

Ra= Tc+ Z LG/ {2} H(_T%-Rw) (9.83)
V1,725 %

This is Bogoliubov’s recursion formula. The sum is over all disjoint families
of subdiagrams, namely, those with v; N+; = (. From (9.83) and (9.81), we
get Rg.

Fig 9.12. Subdiagrams for two-loop vacuum polarization
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As an example of how this formula may be applied, consider the two-loop
vertex correction in figure 9.13.

Fig 9.13. A contribution to two-loop vertex correction

The disjoint families are v ( and the null diagram @ and the full diagram G).
The recursion formula gives

RG =Ta —I—Ig/.y(—Tery) =Ta +IG/7(_T7Iv)
=(1-T))I¢
Rg = (1 — Tg)(l — T’y)IG (9.84)

We have used the fact that Rv = T, since, at one-loop, there are no diver-
gences from the previous order.

As another example, consider again the two-loop correction to vacuum
polarization. In this case the disjoint families are v; and 72 as shown, in
addition to the null and full diagrams. We then have

RG =1 +IG/’71(_TV1R’71) +IG/72(_T72R72)
=(1-7, -Ty) Ic (9.85)

where, once again, R, = Z,, and R,, = Z,,. The renormalized integrand is
thus
Re=(1-Tc) (1- Ty = T’m) 1a (9.86)

Notice that Re # (1 — T¢)(1 — T4,)(1 — T,,)Zg. This is because of the
overlapping nature of the two loop integrations.

In these formulae, we have a recursion rule; we must first determine R%.
and then use (9.83) to obtain Rg. A solution to (9.83) and (9.81) directly
in terms of Zg has been given by Zimmerman. This is the forest formula. A
forest U is defined as a family of subdiagrams with the following properties.

1. ~; € U are proper superficially divergent diagrams.
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2.7, 2 €EU =y Cy2o0rys C~1 orvy Ny = P ie., they are either
nonoverlapping or one is contained in the other.
3. U may be empty.

The solution to (9.81) and (9.83) is then given by

Re= Y [[(-7)Ze (9-87)

U ~yeu

This is Zimmerman’s forest formula.
Consider the application of this formula to the two-loop vertex diagram.
The forests are 0, {v}, {G}, {7, G}. From the forest formula

R = Tg — ToTc — TeZe + T, Tolc
=1-Te)1-T))Ic (9.88)

which is in agreement with (9.84). Similarly, for the two-loop vacum polariza-
tion diagram, the forests are 0, {G}, {71}, {12}, {71, G}, {72, G}. The forest

formula gives

Re=Q1-T), T, - Tec +T,,Tc + T',1c) Lc
=(1-T6)A-T,, - T,) Ic (9.89)

This agrees with (9.86) as well.

9.7 Counterterms and renormalizability

We now turn to the renormalizability of QED. A field theory is said to be
renormalizable if the renormalization procedure can be carried and a finite
effective action I' constructed such that it involves only a finite number of
undetermined parameters (masses and coupling constants). These parameters
are to be determined from experiments. If I" involves an infinite number of
undetermined parameters, we say the theory is nonrenormalizable. QED is a
renormalizable theory.

For the purpose of doing loop calculations, the action for QED was written
in the form (9.78), viz.,

SE(Aaq/jvw) = Scl(Avd_)aq/}) + SC(A71/_)71/}) (990)

Sa(Ab. v dho | SE B 4 50 AP+ D70+ m)w — ielyvA,

Zs—1 A—1
S F,F" + (@A)
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+(Z2 = 1) (- 8 +m) ) — Zodmip

—ie(Zy — 1)y pA, (9.91)

Sc¢ is the counterterm action. In renormalizing the theory, we choose the
counterterms to cancel the divergences to get a finite effective action I'. The
counterterms are thus determined by the calculation of the regularized inte-
grals which isolate potential divergences as A — oo. As a result, we have the
following property.

If the classical theory has a symmetry which is preserved by the
regulators, then the counterterm action (and hence the functional
integral) will have the same symmetry.

An example of this is gauge-invariance in QED. The classical action has the
gauge-invariance given by

Scl (A/u 1/77 w/) = SCl (Au ’Jja w)

A=Ay + 0,0
w/ _ e’ieew
Y = ey (9.92)

If we use a gauge-invariant regulator, we can expect S¢ to have this symmetry.
This leads immediately to Z; = Zs. Thus, with a gauge-invariant regulator,
one can restrict S¢ to be as given in (9.91), but with Z; set equal to Zs.
(The functional integral involves a term %(8 - A)%, which is clearly not gauge-
invariant. However, this does not affect our argument because A, is coupled
to a conserved current. This will become clearer when we discuss the Ward-
Takahashi identities in more detail in Chapter 11.)

The counterterms one has to choose have the same structure in terms of
fields and derivatives as the terms in the action. This can be understood as
follows. Suppose there is a term of the form O which is a function of the
fields and derivatives and which can be generated with a divergent coefficient
c(A) as a result of a loop claculation, up to some order. We must then have
a term ZO in the action to cancel the divergent part of this. Putting the two
together, we then have (Z + ¢)O in the effective action. The A-dependent
terms in the combination Z + ¢ cancel out, but there is no a priori theoretical
reason to say that Z+ c is zero; it could be any finite number Ag, whose value
must be taken from experiments. It should be viewed as another coupling
constant in the theory. We can restate the above result as saying that there
is a term AoQ in the classical action, which we then write as (Ag + 2)O.
This shows that the counterterms are of the same nature as the terms in
the action. If a particular kind of term is forbidden by symmetry arguments
and the regulator preserves that symmetry, then it will not be generated by
loop calculations and so can be excluded consistently from the action and
the counterterms.
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In the case of QED, all terms in the action have dimensions less than
or equal to zero. (We include the d*z in the power counting.) From the
superficial degree of divergence 9, we see that all the terms which can be
generated with divergent coefficients are also of dimensions less than or equal
to zero. This result is true for other field theories as well. In general, we have
the result that an action of the form & = ). ;O;(y) where dim©; < 0 leads
to counterterms with dimension < 0. (At the level of the Lagrangian, local
monomials of the field and its derivatives which have dimension < 4 will lead
to monomials of dimension < 4.) Thus the most general combination of terms
made up of the fields of interest which are of dimension < 0 can be expected to
be renormalizable. This means that after renormalization, the effective action
will have a finite number of undetermined parameters or coupling constants
«;. Once the values of these parameters are taken from experiments, we can
then make predictions using the functional integral. Thus, in the case of QED,
we may expect a renormalizable action to be of the form

S = Z ;i O5(A, 1, ) (9.93)

where ; are monomials of fields and derivatives which are of dimension
< 0. (Strictly speaking, the action must be somewhat more restricted, since
a mass term for the photon can lead to bad ultraviolet behavior for the prop-
agator. This is briefly discussed in the next chapter; for now, we ignore this
complication, because we are imposing gauge-invariance anyway.) Without
symmetries, this is the best we can say. For QED we have the symmetries

1. Lorentz-invariance
2. Gauge-invariance
3. Parity and charge conjugation

Since there exists a regulator respecting these symmetries, and if we use
such a regulator, we can choose a more restricted action which has these
symmetries. The most general action consistent with these symmetries and
with terms of dimension < 0 is (9.90) and so it can be a renormalizable
theory.

So far we have used the superficial degree of divergence. The fact that our
analysis holds in general is due to the following convergence theorem due to
Weinberg.

If § for a graph and all its subgraphs is < 0, the corresponding integral
is absolutely convergent.

In building up the theory, one has to use this in conjunction with Bogoli-
ubov’s recursion formula. Consider, for example, the O(fi) terms. By consid-
ering graphs with 6 > 0, we see that all divergent terms are of dimension < 0.
At (’)(h2), consider Rg. We have already subtracted out subdivergences, so
the kind of divergences generated by Rg, viz., TgRg are analyzed by consid-
ering just the superficial degree of divergence of G, since the subgraphs are
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convergent. Analyzing terms with 6(G) > 0 shows that we again have only
dim < 0 terms as potential divergences. Thus recursively, one is led to the
result that

dim < 0 terms = potential divergent terms of dim <0

This result combined with the symmetry argument can prove the perturbative
renormalizability of QED.

If terms with dim > 0 are used, we lose renormalizability. For example,
consider [ d*z(y1)? which is of dimension 2. This can lead to the graph
shown in figure 9.14. The contribution of this diagram is divergent and re-
quires counterterms of the type [ d*z(¢p1p)3. This means that we should also
have a term of this type in the action with some arbitrary coupling constant.
Such a term, in turn, leads to the graph shown in figure 9.15. The contribu-
tion of this diagram is also divergent and needs a counterterm of the type
f d*z(11)%. This leads to more divergent graphs in turn and we end up with
an infinite set of counterterms and hence an infinite set of coupling constants
in the theory. Thus, quite generally, the addition of a term of dimension > 0
in the action leads to a non-renormalizable theory.

Fig 9.14. A one-loop 6-fermion vertex generated by (¢1))?

Fig 9.15. A graph generated by ()3
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Some interesting examples of renormalizable theories are QED, nonabelian
gauge theories, scalar field theory with a p?-interaction, and scalar QED with
the action

S = /d% [|(a +ieA)d|* +m2p*p + N(¢*p)? + £F2 +2(0-A)2| (9.94)

Some prominent examples of non-renormalizable theories are the nonlinear
sigma models, the V' — A current-current theory of weak interactions, and
Einstein’s theory of gravity.

The renormalization procedure can be and needs to be carried out in any
theory. The difference between renormalizable and non-renormalizable theo-
ries is then a matter of how one interprets and uses the effective action. For a
renormalizable theory, one has a finite number of coupling constants and other
parameters and predictions are straightforward. In a non-renormalizable the-
ory, I involves an infinite set of coupling constants. The action to be used in
such a theory will have monomials O; of the fields and derivatives of arbitrary
dimension. The effect of a term of high dimension on low-energy processes is
suppressed by powers of the energies involved. For example, consider a term
like A [ d*z(11)%. The coupling constant A\ must have dimension —2. So let
us write it as g/M? where g is dimensionless and M is some constant with the
dimension of mass which is characteristic of the theory. This term can con-
tribute to two-particle scattering. The total cross section for such scattering,
in the lowest order, for example, will go like g?p?/M*, just on dimensional
grounds. Here p denotes some typical scale for the momenta of external parti-
cles. This becomes negligibly small when p < M. Thus, even though we need
to know the value of g to make a prediction about the two-particle scattering
in general, we can actually make a prediction for low energies (low momenta)
without knowing g, if g is not abnormally large. The range of validity of this
is determined by the value of M, which will be a characteristic mass scale
of the theory. We can thus use a non-renormalizable theory sensibly, make
predictions with it and so on, if we restrict the range of validity of our pre-
dictions to energy regimes which are low compared to the characteristic mass
scale.

One can also understand and estimate this mass scale as follows. The cross
section we have calculated grows with energy. But cross sections have to be
bounded by unitarity of the S-matrix. The growing cross section will violate
this bound at some energy. This gives a rough estimate of the energy beyond
which we will need the value of g to make predictions. (An explicit calculation
along these lines is given in Chapter 13.) Notice that if we introduce a new
set of particles (and fields) at this stage, the Hilbert space is enlarged and the
implementation of unitarity changes. Thus the breakdown of unitarity can
also be interpreted, in some cases, as the signal of producing new particles
as intermediate states in collisions. In turn, we may consider this as a signal
of the need to augment the theory with new particles.
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Ultimately, rather than having an infinite set of coupling constants, we
might consider it desirable to introduce relations among them, based on some
symmetry perhaps, and adding some new fields as well. This would leave
us with a finite number of parameters again and would be equivalent to
embedding the theory in a renormalizable theory which would then have a
much larger range of validity.

As an example of how this might work out, consider the nonlinear sigma
model which is used for describing low energy pion-nucleon dynamics.

1 _
S = —ifﬁ/d‘l:z: (Tr [(U7'0.U)’] + Nv-0N
+mNURN+NWHN>

Py = % (1£7s5) (9.95)
where N is a two-component column vector, each component of it is a
four-spinor; N7 denotes the proton field, No denotes the neutron field, and
U is a (2 x 2)-matrix denoting the triplet of pions ¢%, a = 1,2,3, via
U = exp(it%0®/V/2 fr). 7@ are the Pauli matrices, connecting the proton
and neutron, and thus generating the isospin transformations. fr is a con-
stant, called the pion decay constant. This theory is non-renormalizable, with
interaction terms containing arbitrarily high powers of the pion field. One has
to add an infinity of terms to (9.95) to make a renormalizable theory; the
simplest such term would be

S = c/d4x Tr [(U'0,U)"] (9.96)

Pion-pion scattering shows that the theory (9.95) can be used up to approx-
imately 47 f in energy. Around that value of energy, the contribution from
the term (9.96) becomes important and one must add this as well. Terms of
higher dimension than S; also become important at higher energies. Eventu-
ally, one needs so many new fields and so many terms that one has to seek
a better theory to which (9.95) is a low-energy approximation. In the case of
pions and nucleons, such a theory is quantum chromodynamics (QCD).

A similar situation holds for gravity as well. We can, and do, use Ein-
stein’s theory to make low-energy predictions. The energy scale involved is

the Planck mass Mp = (GN)_% ~ 1019GeV. (G is Newton’s constant.) All
experiments to date are far below this energy and so we have not faced any
serious discrepancy in the theory of gravity yet. Terms of dimension higher
than the Einstein action, such as the square of the Riemann tensor, should
be there in the theory of gravity. The hope is that there is some symmetry
which will gather up all such higher-dimensional terms, an infinity of them,
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into an action with a finite number of parameters. One can then formulate
gravity as a renormalizable theory, with possible infinities being restricted by
the symmetry. We do not know what this is yet, but string theory may be
such a theory.

A note on regulators

When we change regulators, the divergent terms change by finite amounts.
Thus the counterterms change by finite amounts as well. The parameters, as
they appear in the action, are also changed. But they are determined by
experiments and so we can specify them in terms of scattering amplitudes
at certain chosen momenta. If we express the cross sections in terms of the
value of scattering amplitudes at the chosen momenta, then the parameters
are eliminated (in favor of the amplitudes at the chosen momenta) and the
results are independent of the regulator.

Given the relationship between the counterterms and the regulator, we
can say that a choice of regulator is equivalent to a choice of (the coeflicients
of ) the counterterms. This shows that there is nothing particularly important
about symmetries in a regulator either. If a regulator exists which has the
desired symmetry, we can still choose to use a regulator which does not re-
spect this symmetry. In this case, we simply have to have counterterms which
do not respect the symmetry. One can then impose desirable symmetries at
the level of the renormalized I'. For example, if we calculate the vacuum
polarization graph in QED without a gauge-invariant regulator, we will find
a term like A2A2. This can be canceled by a counterterm u?A? by choosing
12 appropriately. This counterterm does not have gauge invariance; this, by
itself, is not a problem. Gauge invariance is important for eliminating the
unphysical polarizations of the photon and thereby getting a unitary theory.
We must thus impose it on the renormalized theory, which will require the
counterterm A2 to cancel the A% term generated from vacuum polarization
exactly. This is in fact the procedure we used in retaining only the transverse
part of IT*” in the vacuum polarization. Thus, the use of a regulator which
does not have gauge invariance is perfectly acceptable so long as we can im-
pose gauge invariance on the renormalized action by suitably choosing the
coefficients of the counterterms. Nevertheless, in practical calculations, espe-
cially with many external particles and loops, it is algebraically much simpler
if we choose a gauge-invariant regulator. (We might also note that the exper-
imental upper bound on the photon mass is very small, < 2 x 10~ 16eV.)

There are situations when there exists no regulator which has all the
symmetries of the classical action. Typically, this happens when we have
many symmetries and we cannot have a regulator which preserves all of
them. In this case, it becomes impossible to impose all the symmetries at
the level of the renormalized theory. We impose the most important ones,
such as those required by unitarity, and use a I" which breaks some of the
other symmetries. The symmetries which are broken by the regularization
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process are said to be anomalous. This is discussed in more detail in Chapter
13.

9.8 RG equation for the scalar field

The fact that the Green’s functions G(z1, zg, ..., ) of the renormalized the-
ory do not depend on the cut-off A leads to constraints on their asymptotic
behavior. This can be expressed by an equation which tells us how the Green’s
functions behave under a scale change of the momenta or the coordinates.
This is the renormalization group (RG) equation. The RG equation can be
used to determine the asymptotic behavior of Green’s functions. It has also
been used to determine the critical exponents of various field-theory models
in statistical mechanics. In this section, we will derive the RG equations for
a scalar field theory.
The Green’s functions for a massless scalar field theory are given by

Gl oo, van) = A [lde] €8 ploa)plan)oplan)  (097)

where )
S = / d*z [523(/1)(&;:)2 + )\Zl(/l)<p4] (9.98)
The Green’s functions so-defined are finite as A4 — oco. In terms of x defined

1
by ¢ = Z5 2 x, we have

S = /d4x {%(8){)2 + Ao Xﬂ
Ao = AZ1(A)Z52(A) (9.99)

Ao depends on A and A. We can invert this relation and write A as a function
of Ao and A; i.e., A = A(Ag, A). Since A does not depend on the cut-off A, it
must be that the A-dependence of Ag cancels out the explicit A-dependence
of the function A. In other words

O\ dNo 2 B
<8—)\0>A dlog A + (810g/1>/\0 =0 (9.100)

In terms of the variables x, the Green’s functions can be expressed as

G(ar, w9, ) = N 25N/ / (dx] e x(e1)x(z2) - x(a)

= 253N (x(@)x(@) - x(@n) ) (9.101)

where we have used the abbreviation
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(0) =N /[dx] eSO (9.102)

We now turn to the RG equations. The A-independence of the Green’s

functions gives
d

dlog A

Using the expression for G as given in (9.101) and differentiating through,
we find

N dlog Zs

2 dlog A

G($1,$2,...,$N):0 (9103)

ds
dlog A

- 227N (e xlow) (g ) ) =0 (9100
In order to simplify this further, we need the cut-off dependence of the action
S. This comes from two sources, one due to the cut-off dependence of A\ in
the interaction term and the other in the integrals of the monomials of the
fields. The latter point becomes clear if we write the expressions in momentum
space. For example,

4
So(4) = %/d‘*w (0x)* = %/2<A2 (;f; x(=p) p* x(p) (9.105)

The largest value of momentum is given by A, or equivalently, there is a
short-distance cut-off for spatial separations; we need |z — y| > 1/A. If we
replace A by (1 + o)A, we must have |z —y| > 1/(1+ o)A. The integral
can then be related to the integral with cut-off A by the change of variables
x—z=x (1+0),|z—21]>1/A Thus

SO((l " U)A) B %/61417 (8X)2‘(1+U)A - % ﬁ /d42 (8)()2 z/1+0
= % d'z (0x)° (9.106)
where
) 1
X(z) = oo x(z/1+0)
~x(@) -0 (3 5 +1) x()
~x —o(Dx) (9.107)

The effect of the change of cut-off is thus to change the fields x by o(Dx)
where

)
Dy = (z 5t 1) X (9.108)

gives the effect of a dilatation or scale change on the fields. The result (9.106)
can thus be written as
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_dSo
dlogA

dz (Dx)% So (9.109)

For the interaction term, we have a similar expression and, in addition, we
have the change due to the explicit A-dependence of .

dSmt 4 5 d)\o / 4 4
— = [ d*z (Dx)— Sint — d A1
dlog A / z( X)(SX Sint dlog A X (9.110)

Using these results in (9.104) we find

3 T G+ 2R x(an)x(aa)  x(aw) (/ (DX)%S) >
AN (ax(aa) o) [t ) =
(9.111)

A change of variables x — X’ = x + dx in the functional integral leads to
the identity

Jlax &5 000 = [lav)e 5% o)

_ / ldx] ¢S O(x) + / dx] S0 [50 — 0 58]
(9.112)

In other words

(00) — (O 685)=0 (9.113)
Equation(9.111) can now be simplified as

0 N dlog Zs
E i A N—— ’ sy

[ . o0x; + 2 dlog/l] Gl1, 25 TN)
0o

dlog A

25~V x(an)x(@) - x(aw) / dhz Xty =0
(9.114)

The term with the insertion of the interaction term [ x* can be obtained from
the coupling constant dependence of the Green’s function. Differentiating the
expression (9.101) for the Green’s function

0 N (0logZs
o O 2( Do )AG

- 2R o) ) ©0.115)

Here we consider Z3 as a function of Ay and A. Further, writing
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dlogZs  (0Olog Z3 O Olog Z3 (9.116)
dlogA oxo ), 0logA dlog A/, ~ '
equation (9.114) becomes
0 X O
S g # N0+ gtra] G =0 0117
where 1 /9loe Z
_ 1 0g 43
1T (810g/1))\0 (9.118)

Finally, we want to express this in terms of derivatives with respect to the
renormalized coupling constant A rather than \y. Since )¢ is a function of A
as given by (9.99),

M D O (N} G
dlog AdXg — Dlog A \ Do) 4 OA

o o\ oG

B dlogA ), OA
oG

= %S

where we have also used (9.100). Combining this with (9.117), we get the
renormalization group (RG) equation

(9.119)

0 0

The quantities 4 and ~ in this equation are, once again,

oA
0=
OlogA )y,
1 (0Olog Z3

=—= 9.121
7 2 ( Olog A ) o ( )

These are functions of the coupling constant .
For the ¢* theory it is easy to calculate 3 and v to the lowest order

in perturbation theory using our explicit formulae for the renormalization
constants. The results are

%
BN = oz T
3\2

In the noninteracting theory, 8 and -y are zero and the RG-equation shows
that the Green’s functions behave as functions of dimension N, or equiva-
lently, the fields ¢ have dimension 1. This is also clear from (9.108) and
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(9.109), which show the effect of a dilatation on the fields. In the interacting
theory, the Green’s functions no longer have any scaling behavior in general.
However, in the special case when 3 = 0, there is still scaling behavior; the
dimension of N-point Green’s function is then N(1 + «), not just N. For
this reason, v is referred to as the anomalous dimension of the field ¢. 3 is
a measure of the scaling violations due to the interactions; it is referred to
as the [-function. Even though there is, in general, no scaling behavior for
the Green’s functions in the interacting theory, scaling behavior may occur
at values of the coupling for which 8 = 0. In other words, the theory can be
at a zero of the S-function. Such zeroes can occur at very high or at very low
momenta, depending on the theory. In order to show how this can happen
and how scaling behavior is obtained, we shall need to solve the RG-equation.

9.9 Solution to the RG equation and critical behavior

The solution is most easily obtained in terms of an effective coupling constant

A, referred to as a running coupling constant. It is defined by

‘jl_f;\ TSN (9.123)

Here s is a scaling parameter, which scales the coordinates as © — e®x. We

may write (9.123) as
A
d
s=— / e (9.124)
(u)
Notice that X is obtained as a function of A and s and we have chosen the

initial condition A = X at s = 0. Differentiating both sides of (9.124) with
respect to A, we also find

ON
B g5 =

We may now write the solution of the RG equation as

BV (9.125)

 Alu)
B(u)

where A = N(1 4 7). One can check this solution by differentiating with
respect to s. This will give the equation

G(e*zy, e’xy,...,e*rN, \) = G(21, T2, ..., xN, \) exp (/ du) (9.126)
A

oG

o ANG (9.127)

o _
S 6 = )

By directly differentiating with respect to A and using (9.125), we find

oG <, 0G

B(A)m = ﬁ(/\)ﬁ + ANG — ANG (9.128)
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The last two equations (9.127) and (9.128) verify that G given in (9.126) is
indeed the solution of the RG equation.

The nature of the solution can be understood by first considering the
zeroes of the (-function. Perturbatively, § is zero at A = 0. In general, one
may have other zeroes for the S-function. Let A, denote a zero of 3, B(\.) = 0.
The RG equation (9.120) can be trivially solved at this value of the coupling
constant, by setting § = 0, as

G(e’xr1,e°xa, ..., e°xn, M) = exp(—sA(\y)) G(a1, 22, ...,xN, A)  (9.129)

This shows that the Green’s function has a simple scaling behavior with
dimension A(\,) = N(1 4+ ~(X\.)). N is the expected canonical dimension of
G since ¢ has dimension 1. v evaluated at A, is the anomalous dimension
at the chosen value of coupling. Notice that once we are at a zero of the (-
function, the running coupling is a constant with respect to scaling and does
not run anymore. Zeroes of the g-function are therefore called fixed points.
In the neighborhood of a fixed point A, 3 is given by 8 &= /(M) (A — As).
From equation (9.123), A will approach the fixed point A, as s increases if
B'(As) > 0. The Green’s function is, in general, a function of differences
of coordinates x; — x;, so that an increase in s corresponds to considering
processes at larger separations of points, in other words, the infrared limit.
For this reason, we say that such a fixed point is an infrared stable fixed point.
The Green’s functions or correlators of the theory show scaling behavior in the
infrared limit; the theory is effectively at the value of the coupling constant
Ax, which is the infrared stable fixed point. Because of the scaling behavior,
we say the theory is critical. On the other hand, if #’(\.) < 0, A approaches
the fixed point as s decreases or as we go to shorter and shorter separations.
This gives an ultraviolet stable fixed point and the theory can be described
by the critical theory at large momenta. The approach to such fixed points is
also important; if the approach to scaling is slow, say, logarithmic, we never
attain criticality; we have only asymptotic criticality.

The general solution (9.126) shows that we do not have scaling of Green’s
functions in general. Nevertheless, there is a simple rule to obtain the behavior
of the Green’s function under scaling. The effect of scaling the coordinates
x is obtained by replacing the coupling constants in the Green’s function by
the running coupling constant A and then there is an extra exponential factor
due to the dimension of the function.

In perturbation theory, we always have a zero of the S-function when
the coupling constants are zero, since [ is obtained as a power series in the
coupling constants. Near zero coupling, if § is positive, A = 0 is an infrared
stable fixed point; the theory tends to remain perturbative for processes at
low momenta. This is indeed the case for the p*-theory we have considered.
(The same property holds for QED as well.) In the ultraviolet region, we
get a strongly coupled theory as the effective, or running, coupling grows.
If B is negative, the free theory is obtained in the ultraviolet limit, for for
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processes at large momenta. This is in fact the case for nonabelian theories,
if there are not too many matter fields. The high-energy limit of the theory
is perturbative; the approach to the free theory is only logarithmic and so
this case is referred to as asymptotic freedom. We will discuss asymptotic
freedom in QCD in some more detail in the next chapter.

The renormalization group has been extensively applied to the study of
critical behavior of field theories. At a second-order phase transition, there
is scaling behavior for correlators and it is possible to calculate the critical
exponents for the correlators using RG techniques. We will give only a very
simple example of this here. Consider the p*-theory in three space dimensions.
Such a theory can be argued to be a good description for the critical point of
the three-dimensional Ising model. The simplest way to apply our analysis is
to regard the theory as being defined in 4 — € dimensions. For the particular
case of interest, e = 1, but the idea is to regard € as an expansion parameter,
setting it equal to 1 at the end. Then we can apply much of our analysis. The
dimension of the field is now 1 — %6. The interaction term [ d*~¢z ¢* has a
nonzero canonical dimension —e. By redoing the calculation in (9.110), we
can see that the § function has an additional term —e, in addition to what
is calculated in the theory at 4 — e dimensions.

BA) = B(N)a—e — €A (9.130)

The perturbative calculation of 8 to the lowest order in A and € is

9N?
BN |a—e = BN)|a = py) (9.131)
T
We now see that there is a fixed point or a zero of the S-function at
2 2
A= e (9.132)
9
For the anomalous dimension we find
3\2
YN a—e = y(N)]s = 1674
2
k) R — 9.133
1) ~ 153 (9.133)

The solution of the RG equation then shows that there is scaling behavior
for the correlators and ¢ has effective dimension 1 — %e + () = % + ﬁ.
Since the Green’s function depends on differences of coordinates, we obtain

the behavior .

|1 — @ |t

G(l‘l,l'g) ~ (9134)

where the critical exponent = €2/54 = 1/54 to the order we have calcu-
lated. Notice that the fixed-point value of the coupling and the exponent are
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close enough to zero that perturbation theory is adequate for the calculation
presented here.

As a method of analyzing the three-dimensional theory, the e-expansion
can be carried to higher orders; it is an asymptotic expansion, and so, the
actual values of critical exponents will not be improved by calculating to
arbitrarily high orders, they are best approximated by a calculation to a
certain optimal order which depends on the theory.

In principle, the correlators can be calculated by resummation of pertur-
bation theory or by solving the Schwinger-Dyson equations of the theory.
The RG method can thus be looked upon as an efficient way of solving the
Schwinger-Dyson equations in the kinematic regime (either ultraviolet or in-
frared) of interest. There is another related and very useful point of view: If
we are interested in the infrared regime, we may think of the RG technique
as a way of incorporating the effect of modes of the field of high momenta to
obtain an effective action for the low-energy theory.
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10 Gauge Theories

10.1 The gauge principle

We have already discussed the principle of minimal coupling in electrody-
namics and how it can be viewed as the requirement of gauge-invariance.
The coupling of a fermion field 9 to the electromagnetic field A, is described
by the Lagrangian

£ = Dlin" (D — ieA,) — m] (10.1)

It has the property of gauge-invariance, viz., it is invariant under the trans-
formations

1/} N U)/ — ei60w7 1/; N 1/;/ _ J)efiee
Ay — Al = A, +8,0 (10.2)

where 6 is an arbitrary function on spacetime M. We can write the above
set of transformations as

’Q/J/ = 91/17 ’J/ = 1;971
eA), = eAl = gleA,)g ™t —id,g99" (10.3)

where g(x) = exp(ief(z)) is a function on spacetime M taking values in the
group U(1). (We have absorbed e into the function #.) In this chapter, we
want to generalize the above principle of minimal coupling to groups other
than U(1).

Consider a set of fields ¥;, ¢ = 1,2, ..., N, which can transform into each
other under the action of the fundamental representation of SU(N). (In other
words, v; are elements of an N-dimensional vector space, which can carry the
fundamental representation of SU(N).) Introduce a gauge transformation on
¥; by

Ui = gi(x) (10.4)

where g;; is an element of SU(N) in the fundamental representation; i.e., it
is an (N x N) unitary matrix with determinant equal to one. g;; depends
on the spacetime points, and hence we have an SU(N)-valued function on
spacetime. For any other representation R and a set of fields ¢, which carry
this representation we can write
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9o = Dap(g) ¢5 (10.5)

where D,s(g) is the representative of the element g in the representation R.
One can likewise write down transformation laws for any group G and any
chosen representation.

Generalizing what we did earlier, we now define a “covariant” derivative
on such ¢’s. Consider 9,9 given by

Ot = (0u9)¥ + 9(9u¥) (10.6)

O0uy does not transform covariantly as ¢ does, but there is an extra term
Ong. We can define a derivative which transforms covariantly, denoted D, 1,
given by

Dytp = (9 + Au) (@ (10.7)

We introduce a matrix potential A, and choose its transformation law so
as to cancel the inhomogeneous term in the transformation of d,. In other
words, we require the covariance condition

Du(A%)(g¢) = g (Du(A)¢) (10.8)

From this it follows that the transformation law of A, is given by
Aﬁ = QA,ug_l — (O )g_l (10.9)

The quantity (0,,9)g~" is Lie algebra valued; i.e., it has the form —it%9,6%%(0)
for g of the form g = exp(—it®0%(x)). t* are matrix representatives of the
generators of the Lie algebra of G and satisfy the commutation rules

[t °] = ifebete (10.10)

t% are hermitian matrices and f®° are real constants; a,b,c = 1,2, ..., dimG,
where dimG is the dimension of the group. Since the #%’s are dimG inde-
pendent functions, we will need dimG A,’s in general; further, A, is Lie
algebra-valued, since it has to be added to dgg~! as in (10.9). Thus we can
write

Ay = —iteAY (10.11)

where A7, are real functions. We have absorbed the coupling constant e into
Aj; it can be restored at any stage by replacing Ay, by eAj,. The gauge
transformation law can be written, for infinitesimal transformation g ~ 1 —
0%, 0 K 1, as

AS Ay + it (9,0% + FUCAL0°) (10.12)

The combination (BMH‘Z + f “bCAZHC) is the covariant derivative for the adjoint
representation. The Lie algebra (10.10) is satisfied by the matrices (T%)p. =
—if%¢ due to the Jacobi identity; this is the adjoint representation of the
group. In this case, (10.7) can be simplified to
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(Dub)* = 9,0% — i AL (T*)**6" = (9,6 + f**°AL6°) (10.13)

We may thus write the infinitesimal transformation law (10.12) as
Al — Ay =it (Do) (10.14)

The covariant derivative gives us a prescription for coupling A,’s to any
matter field. What we do is to replace all ordinary derivatives by the covariant
derivatives. Of course, one still needs a Lagrangian for the A,’s themselves;
this is provided by the field strength. The field strength tensor F),,, is defined
by

Fu =D,D, —D,D, = [D,,D,]
= —it" (0, AL — 0, A% + fo°Ab AL)
s (10.15)

From the covariance of D, we find

Fu(A%)(g¢) = [Du(A?), Dy (A%)] (9¢) = g [Dy, Du] b = gFyp - (10.16)

In other words,

F#V(Ag) =g F,uv gil (1017)
Thus F), transforms covariantly. Using Fj, = —it"Fj, and gttg™1 =
Db (g)te, we get
a _ ab b
FW(A‘]) =D*(g) F,, (10.18)

where D% (g) is the adjoint representation of g. We choose the normalization
of the t?-matrices to be given by Tr(t%*) = %(5“17. The adjoint representation
of g can then be written as D (g) = 2Tr(t%gt’g™1).

One choice of a Lagrangian for A, is

1 1

L= —@FEVF““” = @Tr (F,, F*) (10.19)
From the covariant transformation law of F,,, viz., F,,(A49) = gF.g7",
it is clear that £ is gauge-invariant. The Lagrangian (10.19) is called the
Yang-Mills Lagrangian. It is the generalization of the Maxwell Lagrangian
for the electromagnetic field. It is the simplest generalization for a general
Lie group, but there are other Lagrangians possible, at least in special cases.
For example, in three spacetime dimensions another possibility is the so-called
Chern-Simons term

K 2
__ v “ pro
L 47TTr (AM&,AQ + 3AHAUAQ) € (10.20)

where e#® is the Levi-Civita symbol in three dimensions. (This Lagrangian
is actually not invariant under all gauge transformations. It changes by a



182 10 Gauge Theories

total derivative under infinitesimal transformations; the action is invariant.
There are also the so-called homotopically nontrivial transformations under
which the action is not invariant, but ¢’ (which is what is important in the
quantum theory) is invariant for integral values of k. Thus for these cases,
one has a well-defined quantum theory.) At this stage we shall concentrate
on the Yang-Mills type theories.

The equations of motion for a Yang-Mills field A, with coupling to matter
fields is easily obtained from (10.19). 0Fg, = (D,0A, — D,0A,)* which gives
6L = (1/e*)F4,(DudA,). The equations of motion are thus

268

(DuF)" +e 540

=0 (10.21)
where S, is the matter part of the action, i.e., terms in the action other
than the Yang-Mills term. Analogous to the identity 0nF). + cyclic = 0 for
electrodynamics, we have the Bianchi identity

DOLF,uu + DuFalu + D#Fya - 0 (1022)

The Jacobi identity for commutators, viz., [D,,, [Dy, D] + [Dy, [Da, D] +
[Da, [Dy, Dy]] = 0, gives the above result directly.

The importance of the gauge principle is that it offers a uniform way to
couple A,’s to matter of different charges. We have already seen this in the
case of electrodynamics. Thus in QED, for fields corresponding to particles
of charge n, we have

Dyyp = (0p — inAy )
Y = ey (10.23)

For a nonabelian Lie group G, the analog of different charges would be dif-
ferent representations. Thus for a general representation R we have

Dytp = (O — it R ALY
V' = Dr(g) ¥ (10.24)

The AZ are always the same, dimG in number. t% are the matrix representa-
tives of the generators of the Lie algebra of GG in the R-representation. There
is only one coupling constant e for each simple group. For example, if we con-
sider the group SU(2) with matter fields in the representations of dimensions
2 and 3 (namely, for j-values % and 1), we have

O.G.

1/)047 = 1723 (ta)otﬁ = (7) ) (Dlﬂ/})a = #1/}0‘ —1 <%AZ¢>
af

Gp, b=1,2,3, (t")ye = —ief,  (Dud)® = 00" + ¢ Ab¢°

[e3%

(10.25)
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10.2 Parallel transport

The matter fields ¥, ¢, etc., can be considered as the components of a dim R-
vector with respect to some chosen basis in a dim R-dimensional linear vector
space V. In other words, we can write

’lﬂ = ’Q/Jiei eV, (1026)

where e; are a set of basis vectors for V' at the point z#. The gauge trans-
formation ¢} = g;;4; is equivalent to choosing a different basis for V. Since
g depends on z*, the gauge invariance of the theory reflects the fact that
physics is independent of our choice of basis (frame) at each point labeled by
z#. We can choose frames independently at each spacetime point, which is,
arguably, a sensible requirement even on a priori grounds. After all, it would
be surprising if the ad hoc or conventional choice of a frame in this field space
were to affect physical results. The fact that physics is independent of the
local choice of frames is analogous to the case of the general theory of rela-
tivity, except that in the latter case V is not an arbitrary vector space, but
the tangent space at z* to the spacetime manifold.

The field strength F},, is the gauge theory analog of the Riemann cur-
vature Rfff, and can also be understood as the angular deficit for parallel
transport around small loops on the spacetime M, with the qualification
that the angular rotation is a frame rotation in the internal field space of the
P’s.

One can analyze parallel transport by considering covariantly constant
1’s. Consider

Dytp = (9, + A =0 (10.27)

In this equation, % is a column vector on which the matrices t* in A, can
act by matrix multiplication. Introduce a U(z) defined by

Oy + A U(z) =0 (10.28)

Such a U does not exist in general as a well-defined function on M, but
one can integrate the above equation along curves C' from, say, y* to x* to
get a path-dependent U(z,y, C). In other words, we are solving the equation
CH*(0, + A,)U(z) =0, where C* is tangent to the curve C.
Uz,y, C) = [1 = Ay, (z — ) [1 — Ay, (z — 2€)€2] - -
1= Ay ()]

=P exp (—/ A#d:c“)
y C

=P exp (z/ taAZda:“) (10.29)
y C

where the symbol P denotes the ordering of the matrices A, along the path
as indicated by the first of the equalities above. We divide the path into N
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intervals of small displacements e¢* and write an ordered product of factors
like [1 — A, (xz — €)e] and eventually take e — 0, N — oo, keeping the total
displacement finite and the order of multiplications unchanged. It is then easy
to check, from the first of the above equations, that U(z,y,C) does indeed
solve (10.28). Given U, D, = 0 is solved by

Y =U o (10.30)

with ¢y = contant. Thus U(z, y, C) tells us how frames rotate as we transport
along C' from y to x.

The set of equations D, U = 0 (corresponding to different values of p)
have, as the integrability condition, F,, = 0. Thus U(z,y,C) would be in-
dependent of the curve C' and give a well-defined function on M if and only
if F,, = 0. (If there are noncontractible loops on M, it is possible to get
more general solutions. U(z,y) defined by integration along an open path
C need not be the same as what is obtained by integration along C' with
an added circuit around a noncontractible loop, since the two paths cannot
be deformed into each other. For simply connected spacetimes, F},, = 0 will
give a path-independent function U(z) as the result of the integration.) If
F,, =0, we can write, for simply connected spaces,

A, =—-(0,U0) Ut (10.31)

If F,,, # 0, we see that, for a small closed loop, we have

U=P exp (—f A#d:c“> ~1— (Fuo") (10.32)
C

where 0" is the area element of the infinitesimal surface whose boundary is
the curve C. (The above result is essentially Stokes’ theorem. This theorem
does not work, as it is, for larger loops, because of the matrix nature of the
A,’s which means that A’s at different points do not necessarily commute
with each other. For small loops, the above result can, however, be seen by
direct expansion of the path-ordered exponential.) The above result (10.32),
along with (10.30), shows that F),, measures the “angular deficit” for parallel
transport around small loops.

Using the equation D,U = 0, one can check that, under a gauge trans-
formation of the potentials A, we have

U(z,y,C, A9) = g(x) U(x,y,C, Ay) g (y) (10.33)

For a closed loop, where z and y coincide, we have a similarity transformation
of U by g(x) and hence the trace is invariant. The holonomy operator or the
Wilson loop operator W(C) is defined by

W(C) = Tr [P exp <_ fc A#d:c“>]

e [p e (i eagae)] 00
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10.3 Charges and gauge transformations

The Lagrangian for a gauge theory is invariant under the gauge transforma-
tions

Ay — A% =gAug — (Oug)g ™, P — 9 = gi) (10.35)

Consider first the constant transformations for which g(x) is independent of
xt. For these cases, the gauge symmetry is just like any global symmetry.

Ay — Al = gAug™, Y =PI =gy (10.36)

Thus we must expect a Noether current and associated charges. We can find
the current by considering the variation of the Lagrangian as discussed in
Chapter 3. As an example, we shall take the matter field to be fermions
coupled to A,. We then find

1 -
0L = —5 5 F* MO FS, + ity 0,50 + -

1 _
=0y | —— (F* "5 A7) + iypy"% | + terms proportional to
e
equations of motion
(10.37)

Thus the Noether current J* # is given by
1 _
JHYT = —— (F*"M§AY) + ipy" oy (10.38)
e

where 6% are the (infinitesimal) parameters of the transformation. From
(10.36), 6Aj, = —f“bCAZHC, 0 = —it°0%yp. The current is thus identified
as
1 _
T = S fUF AL + gy (10.39)

This current is easily checked to be conserved by the equations of motion.
The equations of motion for the gauge field are

i(DHF””)“ = -y 1% (10.40)

e2

Using this equation and the definition of the covariant derivative, we find

" Fomny
JH =9, [ 2 ] (10.41)
The corresponding charges can thus be written as
1 ,
Q* = / Pz JO == F%igs; (10.42)
€ || —o00
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The charges are given by two-surface integrals. This is a general feature of all
gauge theories. (For example, in the general theory of relativity, for asymp-
totically flat spacetimes, the charges corresponding to coordinate transfor-
mations, viz., momentum and angular momentum, are defined by surface
integrals at spatial infinity. Generically, this has to do with the fact that
charge densities cannot be defined in a gauge-invariant manner; compare
with equation (10.39), for example. Also notice that equation (10.39) shows
that there can be nonzero charge even when the matter fields are zero; the
gauge fields themselves are charged in the nonabelian theory. )

Since the constant transformations (10.36) act like a Noether symmetry,
we expect that the wave functions or states transform as representations of
the corresponding symmetry group, i.e.,

|w9) = @0 |w) (10.43)

This result can be shown as follows. The general variation of the Lagrangian
is given by (10.37). From the surface term in the action, we can identify the
canonical one-form as

6= / dx {—%F”O%A‘; + i&yoauj]
(&
1 -
= / 3 {;Fé’i&l? + 11/17051/)} (10.44)

This canonical one-form shows one of the difficulties of quantizing the gauge
theory; there is no canonical momentum for Aj. However, as we have seen
in the case of electrodynamics, we can set A = 0 by a choice of gauge.
For the remaining components, the canonical one-form (10.44) leads to the
commutation rules

[A;’l(wa t)v AS(y, t)] =0
[Af (@, 1), 2 Fo;(y, 1)] = 162050 (x — y) (10.45)
[F&(:I:, t)? F(l))j(ya t)] =0

The fermion fields have the usual anticommutation rules.

As in the case of electrodynamics, the Gauss law requires special treat-
ment. It is part of the Lagrangian equations of motion. Since it does not
involve any time-derivatives, in a Hamiltonian formalism, it cannot be ob-
tained as an equation of motion, but must be imposed as a condition selecting
allowed initial data in the classical analysis. In our quantum theoretic treat-
ment of electrodynamics, we solved the Gauss law, eliminating the longitu-
dinal component of A; which led to a set of unconstrained fields and then
used the commutation rules for these unconstrained fields. One can carry
through an analogous reduction here, but an alternate approach is to impose
the Gauss law as a condition on the physical states. Recall that if we elim-
inate the longitudinal part of A;, it is given in terms of the charge density
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which involves 1 and v; as a result, those commutation rules in which the
longitudinal part of A; appears will involve the fermion fields. The alternate
approach of imposing the Gauss law on states has the advantage that we can
have the commutation rules (10.45) and so the operator structure is simpler.
However, there are states in the Hilbert space which are generated by the
action of longitudinal components of A¢ on the vaccum. These are clearly
unphysical states since they are absent if we solve the Gauss law to eliminate
the longitudinal components. Physical states of the theory in this approach
are then defined as those states which obey the condition

G @) =0 (10.46)

In other words, we do not require G* = 0 on all states (or as an operator
equality). It is a condition selecting physical states in the Hilbert space. This
condition, (10.46), will still ensure that the Gauss law is obtained for matrix
elements with physical states, in particular, for expectation values of gauge-
invariant operators for physical states. This is sufficient for observable results
of the theory to be consistent with the Gauss law.

For the nonabelian theory, the Gauss law is identified from the time-
component of the equations of motion as

G(0) = /dgx 0 L%(DZF“))“ + Tty (10.47)

Consider now the transformation

SA¢ = —(D;h)*
S = —it* 0%, syt = Titege (10.48)

which is an infinitesimal gauge transformation, but we do not necessarily re-
quire that the parameters vanish at spatial infinity; instead, they could be
nonzero but constant (independent of angular directions) at spatial infinity.
The canonical commutation rules show that the generator of this transfor-
mation is

G(9) = / Bz L%F“Oi(DiH)“ + 0%Tt%) (10.49)

(This gives i0A% = [A%, G(0)], etc.) Notice that the operator (10.49) differs
from the Gauss law (10.47) by a surface term. The variation of a state when
the transformation (10.48) is carried out is given by

o)WY =iG(6) W) (10.50)

Consider now states which obey the Gauss law condition (10.46), i.e., physical
states. On these, for transformations for which the 6* go to constants not
equal to zero at spatial infinity, we can carry out a partial integration to
obtain
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S|y = 2_2 09 F0idS; |w)

|| —o00

=iQ" |) (10.51)

This shows that the constant transformations do act as a Noether symmetry
on the physical states with the charge operator as given by (10.42). For trans-
formations for which 6% go to zero at spatial infinity, there is no surface term
and G(0) and G() coincide. The requirement (10.46) shows that physical
states are invariant under such transformations.

We can now summarize the basic result of the analysis given above.

1. For transformations g(z) which go to the identity 1 at spatial infinity,
i.e., for 8 — 0, the physical states |¥) are invariant.

2. For transformations g(z) which go to a constant element g, which is not
the identity, or for constant g over all space,

0|y =iQ0% |¥) (10.52)
This result can also be restated as follows. Define

Gy = {set of all g(x) such that g(z) — 1 as |z| — oo}
G= {set of all g(x) such that g(x) — constant element of G,

not necessarily 1, as || — oo}

The results we have obtained above then amount to saying that the physical
states are invariant (and not just covariant) under G,. Thus G, is the “true
gauge symmetry” of the theory in the sense that its elements represent un-
physical, and hence redundant, variables in the theory. Since the elements of
G go to a constant, not necessarily the identity, at spatial infinity, we have

G/Gx« ~ set of constant g's ~ G
G/G. ~ G is the Noether symmetry of the theory defined by the charges.

10.4 Functional quantization of gauge theories

In Chapter 8, we showed that for scalar fields and fermions, we had a simple
prescription to obtain the generating functional as a functional integral, viz.,
given the classical Euclidean action Sg one could obtain Z[J, 7, 7] as

ZglJ, i, :N/du (¢, 9,9) exp [—SE(@J/_)J/))"'/C#‘T (Jo + i + ¥n)
(10.53)
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where dy is an integration measure on the space of configurations, that is, on
¢ = {6(2). (), V(@) | $(a) : M = R, (), b(x) : M — N}

where R denotes real numbers and N denotes Grassmann numbers. (The
specific measure we used for defining du was the Euclidean metric on C.)

The functional integral for QED was also obtained in Chapter 8, but it
did not use the classical Maxwell action, but rather a modified version of it,
which had to do with gauge-fixing. We shall now show that the prescription
used for the scalar and fermion fields will apply to gauge fields as well, with
the appropriate definition of the configuration space and its volume measure.

We start by showing that the naive definition of the integration over all
A, does not work. Let us start with the Euclidean Maxwell action

1 1
S=7 / Fu B =5 / A (0 0w + 0,0,) A
1

=3 | M) (10.54)
where
My (2, y) = (=0 6 + 0,0,) 6 (x — ) (10.55)

If we had a scalar field, we would write

ZZ/[dsD]exp (—%/s@MsoJr/Jcp)
= (det %>_ exp <%/JM‘1J) (10.56)

M~ would then be the propagator. In the case of the Maxwell action though,
we cannot do this since M, (x,y) has zero modes, i.e., det M = 0 and M ~*
does not exist. The existence of zero modes is due to gauge invariance. Under
a gauge transformation, A, — A, + 0,0. For a mode of the form ¢, = 0,0
we find

/Muu(x, y)¢"(y) = (-0 ¢p + 9,0 - ¢) =0 (10.57)

In other words, ¢,, = 0,0 is an eigenvector of M, (x,y) with eigenvalue zero.
We must remove such gauge or unphysical degrees of freedom from the A,’s
to define a proper functional integral.

In order to understand this better we must define the configuration space
more carefully. We shall discuss gauge theories in general from now on, since
the formalism is essentially the same for QED and other gauge theories. First
we define the function space A, which is the space of all gauge potentials.
This will be the set of all four-vector-valued functions A, (x) which are also
elements of the Lie algebra. Existence of certain integrals like [ F? will be
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assumed. When we write [dA] in a functional integral, we are writing a mea-
sure on A defined by [[, , , dAj(z). This corresponds to the volume defined
by a Euclidean distance function or metric on A given by

| 6A ||?= /d% SAL ()0 AL (x) (10.58)

The space A has the property that any two points A, (z) and Asg,(x)
can be connected by a straight line, which is in fact given by

Ay(r,z) =7 Ap(x) + (1 —7) Agp(x) (10.59)

for 0 < 7 < 1. Notice that A, (7, z) transforms, for all 7, as a gauge potential
should, viz., A9 (r,x) =7 A (z) + (1 —7) A, (z) for g = e~#"0" " A is thus

an affine space; i.e., we can write any configuration 4, as 4, (x) = AELO) +&,,

where A,(?) is a fixed potential and &,(x) is a Lie-algebra-valued vector field.

In the previous section we have defined the set of gauge transformations
G. and showed that not only the action, but the wave functions are invari-
ant under G,. The space G, was defined in terms of gauge transformations
at a fixed time as is appropriate for the discussion of states and operators
acting on them. For the functional integral, we can generalize these ideas to
a four-dimensional setting. We will use the same notation, G,, to denote the
set of gauge transformations which go to the identity at large values of the
Euclidean radius, i.e., as vatx# — oco. Physical configurations over which
we must integrate are defined on A/G,.. Any two potentials which differ by a
gauge transformation, that is, by an element of G,, are the same physically
and correspond to the same point in A/G,. In other words, the true space of
physical configurations on R* is not A but

C = A/G. (10.60)

Given the configuration space C of (10.60), we can say that the correct
functional integral for a gauge theory is given by

Z:/du(A/g*) =St 1A (10.61)

where Sg is the classical Euclidean action and du(A/G.) is to be obtained
from the metric (10.58) by factoring out the action of gauge transformations.

While (10.61) is indeed the correct prescription, rarely can one evaluate
the measure du(A/G.) exactly. (This can be done for gauge fields in two
dimensions.) One way to obtain the measure is the following. (There are
many caveats which must be stated regarding the discussion which follows,
having to do with global properties of various spaces inolved. We shall ignore
them for the moment, they will be discussed separately.) Consider A, (x),



10.4 Functional quantization of gauge theories 191

which is a point in A. Under a gauge transformation A, — A = gAg~t —

9,991, which corresponds to a different point in A. If we consider a sequence
of transformations starting from g = 1, we see that gauge transformations
generate a flow in A. In order to get rid of gauge degrees of freedom, we
can choose a surface X' which cuts these flow lines transversally. (A “good”
surface X' should cut each flow line once and only once.) We can then pick
the points on X' as representatives of A/G.. The choice of X' is specified by
a condition on the potentials called a gauge-fixing condition. For example,
all A’s which obey 0, A% = 0 lie on some surface Xg.4, all A’s which obey
f*(A) = 0 lie on Xy, ete. If the integrand is gauge-invariant, as is the case
for the classical action, then the choice of X~ does not matter, since one can
get from one X to another by a gauge transformation.

We now want to write du(A/G.). By definition of A/G., we have, at least
locally in this space, A ~ (A/G.) X G.. Thus

[dA] = dp (A/G.) du(G.) (10.62)

For gauge transformations which are close to the identity, namely, g(x) =~
1 —it*0*(x), we can write du(G.) ~ [d8*(z)]. Let the gauge-fixing condition
be

fYA) —h*(z)=0 (10.63)

where h%(xz) has no A-dependence. Multiplying both sides by a common
factor, we can then write (10.62) as

(dA] }det [%bg;ﬂ } — dp(A/G.) [d6) |det [%bg;ﬂ } (10.64)
The determinant of
ARp(z,y) = 6f(x) /66" (y) (10.65)

is known as the Faddev-Popov determinant. We now multiply (10.64) by
exp (=Sp(A) + [ J*AL) 6[f(A) — h], where the §-function is a functional
d-function, and integrate. We obtain

[1a4) 315 0] faer(apr)iexp (~Se)+ [ 17z

= [ an/G e (=set) + [ 1)
< {{d6) det(App) 31F — )

= / du(A/G.) exp (—SE(A)+ / J““AZ) (10.66)

where we have used the identity

[las)detcarp)als —n = [ olr-n =1 (1067
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for integration along the gauge directions. The right-hand side of the (10.66) is
our definition (10.61) of the functional integral over the proper configuration
space. We thus have

ZnlJ] = / [dA] 5[f(A) — h] |det(App)| exp (—SE(A)+ / J““AZ) (10.68)

This gives a formula for Zp,[J] written conveniently in terms of the Euclidean
measure [dA]; the redundancy is factored out by use of the d-function. Strictly
speaking, Z,[J] depends on the gauge-fixing condition, as indicated by the
subscript. Writing the measure du(A/G,) in terms of A’s on the f —h =0
surface is correct only if the integrand is gauge-invariant. The J** Af-term is
not and thus Z,[J] will depend on the gauge-fixing condition. Of course, Z[0]
is gauge-invariant. The implication is that the Green’s functions defined by
Zy[J] will be gauge-dependent in general. However, the S-matrix elements
are not and so we can simplify (10.68) even further as follows. Since h is
arbitrary, we can define the S-matrix using Zj, , Zj or [[dh]F(h)Zy; these
are all equivalent. We can thus define, for the purposes of computing the
S-matrix, another Z by choosing F(h) = exp(— 55— [ h?), where « is just a
real number.

209) = [[104) s174) 1] [@es(drp)lexp (~(a) + [ 707

x [dh] exp <_2612a L hQ(x))

_ /[dA] |det(App)| exp <_3E(A)— 2612a/f2(A)+/JauAZ>
(10.69)

The §-function has been removed in favor of a term f2? which can be consid-
ered as an extra term in the action. We can now make one more improvement
which is helpful in perturbative calculations. From our discussions of Grass-
mann integration

/ dQdQ] e AMQ — qet M (10.70)

for independent Grassmann variables Q(z), Q(z). We may thus write

e Arp)| = [ldoalexp (- | @) Pl ) (10)

We have taken the determinant to be positive, which it is in the region around
the classical vacuum A, = 0. (Eventually the formula we obtain will not be
applicable as it is for nonperturbative effects anyway, so that consideration
of the region around A, = 0 is not too restrictive.) This provides a conve-
nient way of writing the determinant as part of the action with additional
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(Lie algebra-valued) fields ¢* and &%, which is useful in writing down the
rules for Feynman diagrams in perturbation theory. The fields c®*and ¢* are
Grassmann-valued, yet they are not spinors, but scalars. Thus they have the
wrong spin-statistics connection. They are often referred to as the Faddeev-
Popov ghosts. The wrong spin-statistics relation for the ghosts is not a prob-
lem, because they do not appear in the external lines or as asymptotic states
in the theory; they are merely a device to write the determinant in a conve-
nient way. Using (10.71) in (10.69), we finally get

Z[J) = / [dAdcdd] exp (—sq+ / J‘”‘Az) (10.72)

5 f*(x)
66 (y)

The final prescription for the functional integral in a gauge theory is then
quite simple. We have to choose a gauge-fixing function f*(A) (which, by
definition, cannot be gauge-invariant) and then construct S, by adding the
f?-term to the classical action and also adding the Faddeev-Popov ghost
term. Integration of e =S¢ with the standard Euclidean measure for A, ¢ and
¢ will then give the functional integral for Z[J].

We must now ask the question: what is a “good” gauge-fixing? As we
remarked earlier, a good gauge-fixing must produce a surface which intersects
each gauge flow line transversally once and only once. The existence of such
a surface depends on the global properties of A/G.. If we choose a surface
which is not transversal, then there is a direction of gauge variation which
would not change f®. This means that the matrix A%bp(:v, y) has zero modes
and that the choice of f* does not fix the gauge completely. This can be
taken care of by choosing a different function, at least locally in A around
the point A, = 0, such that det App # 0.

A more involved problem has to do with the fact that the gauge-fixing
surface may intersect flow lines more than once. In this case, there are gauge-
equivalent configurations on the gauge-fixing surface or there are nontrivial
solutions g(z) to the condition

S, = Su(A) + / iz [ﬁ F4(A) f“(A)+E“(:z:)( >cb(y)] (10.73)

fU(A%) —h=0 (10.74)

(In this case, A and A9 lie on the same gauge-fixing surface.) In other words,
there does not exist, globally over the configuration space, a surface which
intersects the gauge flow lines once and only once. Integrating over all points
on the chosen surface leads to overcounting of the degrees of freedom. This
problem is known as the Gribov ambiguity. Since the gauge-flow line has to,
roughly speaking, turn around to come back and intersect the gauge-fixing
surface, we see that §f/06 must vanish for some A along the flow line; the
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Faddeev-Popov operator App once again has a zero mode at that point. The
Gribov ambiguity is easily avoided for an Abelian gauge theory such as QED.
However, it is unavoidable for all smooth gauge-fixings in a nonabelian gauge
theory, due to the global properties of A and A/G,. (This will be discussed
in some more detail in Chapter 14.) If we consider a gauge-fixing condition
like 9, A% = 0, we see that App is positive at A, = 0 and so continues
to be positive for a range of A’s which is perturbatively accessible around
A, = 0. The Gribov problem does not affect perturbative calculations with
our functional integral (10.72, 10.73).

10.5 Examples

1. Electrodynamics with f(A) = 0,A"

If we choose f(A) = 9,A", App = —[0,6® (z — y). We then find

1 1
S, = / [@FMFW + E(a -A)? +e(—D)e (10.75)
For the choice a = 1 (and scaling A — eA and adding on the fermion terms)
we get our earlier expression for the QED functional integral (8.57, 8.58).
The ¢, c-dependent term just gives a constant multiplicative factor det(—[)
which can be absorbed into the normalization constant. The limit a — 0 is
known as the Landau gauge.

This derivation of the functional integral for QED justifies the use of the
covariant propagator for the photon in calculating the S-matrix.

2. Electrodynamics with f(A) = 0, A" + A, A"

A simple example of a nonlinear gauge in electrodynamics is given by
f(A) = 9, A"+ A, A", In this case, we find App = —([0, +24-9)5W (z —y),
giving

1 , 1 i}
Sq_/[@FWF“ +E(8~A+A2)2+c(—lj—2fl-3)c (10.76)

The ghosts now interact with the photons and cannot be ignored.

3. Nonabelian gauge theory with f* = 0, A**

In this case, with f¢ = 9 - A%, we find APy (z,y) = —(9,D")?6® (z —
y) where D,, is the covariant derivative (in the adjoint representation). S,
becomes

S, = / [LFa Fanv 4 1 (0 A")? + oM (9™ + f“bcAch) (10.77)

4e2” W 2e2aq
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Choosing @ = 1 and rescaling A — eA,
Sq = 8o+ Sint
1
So = / [5aquaqu + OB,

2
Sint _ / [efabcaHAZAbuAcu + ezfabCfarsAZAlchruAsu + efabcauéaAzcc
(10.78)

In this case, even though the gauge-fixing condition is linear in the gauge
fields, the ghosts are unavoidable since they interact with the gauge fields.
The rules for Feynman diagrams can be read off from (10.78). In particular,
the (Euclidean) propagators for the gauge field and the ghost field are given
by

ik 1
<AZ($)AZ(y)> = 5#1/5(“)/@ ﬁ elk(ify)
C@Fw) = 5ab/ (;lﬂl; % etttey) (10.79)

10.6 BRST symmetry and physical states

In this section, we shall discuss some aspects of the operator formulation
of the quantum theory of gauge fields. The functional integral involves a
modified action as given in (10.73). A canonical operator quantization of
this modified action may be carried out to obtain the states of the theory.
An elegant way to understand the physical states and the elimination of
gauge degrees of freedom in this approach is in terms of the so-called BRST
symmetry, named after Becchi, Rouet, Stora, and Tyutin. In order to display
this, we go back a step and write the action (10.73) as

‘;{;ZEZ;) cb(y)] (10.80)

where B%(x) is an auxiliary field. If we eliminate it by its equation of motion,
namely,

0462
Sq=Sp(A) + / {iB“f“ + TB“B“ + &% (x) (

ae’B* = —if® (10.81)
or if we integrate over B* in a functional integral with a standard Euclidean
measure [dB], we get back the action (10.73).

We now introduce the BRST transformation by
Q Aj = (Duo)*
Q = _%fabccbcc
Qc*=1iB®
QB*=0 (10.82)
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The change in A, involves the ghost field; Q is Grassmann-valued and the
parameters of the transformation must thus be considered as Grassmann
variables. The transformations (10.82) are easy to write down. For the gauge
field Af, we do an infinitesimal gauge transformation A7, — Af — (D,0)*
and replace the gauge parameter —6® by the ghost field ¢*. This also means
that gauge-invariant quantities are BRST-invariant. Since all observables in
a gauge theory must be gauge-invariant, we see that all observables are given
by BRST-invariant expressions. Once the action of Q on Af, is specified, the
action of @ on ¢, as given in (10.82), is determined by requiring Q% = 0.
This can be easily checked as follows.

Q2 AZ _ 8#(Qca)+fabc(aucb)cc + fabcAZ(QCc)
+ fabe fOREAR clee (10.83)
Choosing Qc® + %f"bccbcc = (0 and writing
FP(0,c%) e = 10,(frbecbee), (10.84)
which follows from the Grassmann nature of the ghost fields, we get
Q2 AZ _ _%fabcAchklckcl + fabcfbklAchcc
— _% [fabcfckl _ fcakfcbl _ fcalkab} Azckcl
=0 (10.85)
where we have used the Jacobi identity on the structure constants, viz.,
fcabfckl + fcalfcbk + fcakfclb =0 (1086)
The Jacobi identity follows from the Lie algebra identity or matrix identity
[, 164, 60) + [, [ e0) + [0 4]) = 0 (10.87)

upon using the commutation rules (10.10). One can also check, by using the
Jacobi identity, that Q? is zero on the ghost field ¢® as well, with the choice
of the transformation rule Qc® + % fabecbee = 0. For the antighost field &,
the action of @ should produce a bosonic field; we can simply define this as
iB®. Q B is then taken to be zero, so that Q2 = 0 on ¢®. Q2 is trivially zero
on B® itself.

With the BRST transformations (10.82) we can write

2 2 a
Q |efu(A) — i%E“B“ = iBOfo 4 %B“B“ +e° <%> & (10.88)
The modified action (10.80) to be used in the functional integral can thus be
written as



10.6 BRST symmetry and physical states 197

S, Sald) + / [iBafa Q€ L a(x)(éf%x))cb(y)]

66 (y)
—Sp(A) + Q /[5‘1 (fa—i%Ba)} (10.89)

Since the action of Q on Aj is an infinitesimal gauge transformation with
parameter —c® and Sg is gauge-invariant, we have

Q8,=0 (10.90)

using Q% = 0. This BRST-invariance expresses, for the gauge-fixed action S,
the effect of the gauge-invariance of the theory.

The BRST-invariance leads to a conserved current and charge, which
we now derive. For simplicity, consider the gauge choice f* = 0 - A®. The
Lagrangian for S, can be written, in Minkowski space, as

1 . a a —a a Of€2 a a
L=— 5 F" +iB 0" Aj + 0"c*(Dye)* + ——B*B (10.91)

The variation of this Lagrangian is

1
oL =o* —6—2F;L“’5Aﬁ +iB*0A}, + 6¢*(Dye)® + 0y oct

+ equations of motion (10.92)

Under a BRST transformation, £ in (10.91) changes as 6L = 0,K" =
Ou[iB%(D"c)?]. using the general formula for Noether currents from Chapter
3 and the transformations (10.82), we can identify the current as
1 av . a a aoc =a C

Ju=—=F (Dye)* +iB*(Dyc)* + 4 f2%¢9,c%c ¢ (10.93)
The Grassmann nature of the variations is important for this; it is useful
to introduce a Grassmann-valued parameter for the variations due to @ and
then identify the current after moving this parameter to the left end of all
terms in L. The charge corresponding to (10.93) is

Q= / >z [ F§.(Dic)* +iB*(Doc)® + 5 f¢0q aacbcﬂ (10.94)
(We use @ for the canonical charge, Q for the BRST variation in the func-
tional language.) From the Lagrangian (10.91), the canonical one-form is
given by

1 - Ppa a —a a =a a
6= /d3:v [;F&&Af +iB®0Af + 6¢*(Doc)® + 0pc*dc } (10.95)

In addition to the commutation rules for the A, I, given in (10.45), © leads
to the following nontrivial commutation rules.



198 10 Gauge Theories

[A5 (2, 1), iB" (y, 1)] = i0°"6®) (x — y)
{c(x, 1), o (y, 1)} = 1676 (2 — y)
{&%(ax, 1), (Doc)’(y, 1)} = =66 (2 — y) (10.96)

One can then see immediately that @ defined by (10.94) is the canonical
generator of the BRST transformations, i.e.,

P Q+Q p=—idp (10.97)

where the plus sign or anticommutator applies to the fermionic fields ¢ = ¢, ¢
and the minus sign or commutator applies to the bosonic fields ¢ = A, B.
One can check that Q2 = 0 in the canonical version as well.

In quantizing the theory, we must split the various fields into the cre-
ation and annihilation pieces (or negative- and positive-frequency pieces).
The states can then be built up by the acting on the vacuum state many
times by the creation parts, or the negative-frequency parts, of the fields.
States containing ghosts would be obtained by applying ¢*(~) many times.
In this context, the ghost number is a very useful concept. The Lagrangian is
invariant under ¢ — eXc, € — e *X¢ for some constant . The corresponding
charge is

Qqn = / &z [~ (Doe)® + 8pec?] (10.98)

Consider now the case of electrodynamics again. In this case, the BRST
transformation of the ghost is zero, Qc = 0. The ghost number simplifies to

Qun = [ [c"(@he)" + onet e (10.99)

We now show that the physical states |¥) of electrodynamics can be spec-
ified by the conditions

Q¥)=0
Qgn |¥) =0 (10.100)

We shall also see that states |¥) and |#') = |¥)+Q |\) are equivalent, so that
we may restrict to states which are not of the form @ |)\). In other words,
physical states are annihilated by @ and Qg4 but are themselves not of the
form @ |\) for some state |A). (Notice that any state of the form Q) will
be annihilated by Q since Q? = 0.) Introduce a field ¢ defined by Q & = c.
The field ¢ is the part of A; which is not gauge-invariant; i.e., we can write
A; = AE + 0;&, where AE obeys &-AZ-T = 0. We then have a “quartet” of
fields &£, B, ¢, ¢, which we can call “unphysical” fields. The application of
the negative-frequency parts of these operators on any state will generate a
set of states with “unphysical” particles. The fields 0;Fy;, Ag, Opc and Oye
are related to the canonical conjugates of the quartet and are thus related
to the positive-frequency parts of the quartet operators. Our argument will
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be recursive, where we start with a state with a given number of “unphys-
ical” particles and construct a state with more “unphysical” particles and
require it to obey the conditions (10.100). Let |¥) be a state with N of these
“unphysical” particles. We can write

W) = (BH O1+£5) 0y + ) 05+ ) 04) o) (10.101)

where the O; are some operators and |o) has less number of “unphysical”
particles. We can also assume that |o) obeys the conditions (10.100). We
now require |¥) to obey the same conditions (10.100), i.e.,

Q W) = | BO(QO) + DOy + £)(Q0,) +iB 0y

—d(QO3) — QO | o)

=0 (10.102)

Here QO denotes the change in O due to the BRST transformation; it is thus
the commutator or anticommutator, appropriately, of ¢ with O. Equation
(10.102) requires in general

Q O1 = —i0s, Q03=0
Q Oy = Oq, QO0;=0 (10.103)
The solution to these equations may be written as
01 = 90+, O3 =i 70O
O,= DO+ py, Oy =i BYO (10.104)

This is the choice consistent with zero ghost number. Here O, O are operators
of zero ghost number and are BRST-invariant; p;, p4 are also BRST-invariant
operators. Using this solution

) = [(B<—>§<—> n Z-5<—>C<—>) o+ (i§<—>B<—> n C<—>5<—>) (9} o)
+(BTVpy + TV py) o) (10.105)

Since B(e) 4+ e el = Q(—ice)) and (B Ypy 4 c(FVpy) =
Q(—ic T py + £ py), we get

@) =Q |\ (10.106)
for some state |A). Thus, all states which have “unphysical particles” and
obey the conditions (10.100), by recursion of the above argument, are of the

form @ |A). Since @ is a self-adjoint operator, these are also zero-norm states,
ie.,
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1Q [A) I= (AlQ*IX) =0 (10.107)

These zero-norm states do not contribute to the matrix elements between
physical states of any operator which is BRST-invariant, i.e.,

(1]0Q |N) = (1|Q O]A) =0 (10.108)

since Q|¥) = 0. In particular they do not contribute to the S-matrix which
is built up by time-evolution by the Hamiltonian. The Hamiltonian is BRST-
invariant and hence time-evolution will preserve the BRST-invariance of the
physical states. We also see that |¥) and |¥') = |¥) + Q |A) are equivalent.
(Actually going from |¥) to |¥') is the Hilbert space version of a gauge or
BRST transformation.) We may thus restrict our analysis to states which
obey the conditions (10.100), but which are not of the form @ |\) for some
|A). By the recursion argument above, the only states of this kind must be
states with no “unphysical” particles. They are built up using BRST-invariant
operators which include gauge-invariant operators as well. Since AE are -
invariant, the general solution to (10.100) is of the form

@) = [r) +Q |\) (10.109)

We have thus shown that states of transverse photons obey the conditions
(10.100) and are not themselves of the form @ |\). In other words, each
physical state belongs to a class of |¥)’s which obey the conditions (10.100)
with the equivalence relation |#) ~ |¥) + @ |A). (One may say that the
physical states are cohomology classes of the BRST operator.)

This description generalizes to the nonabelian case also, although the
construction of the recursion argument is algebraically more complicated.

10.7 Ward-Takahashi identities for Q-symmetry

We have shown that the physical states obey the condition @ |¥) = 0. The
Green’s functions of interest in the theory are the N-point functions for
BRST-invariant operators. The S-matrix for physical states may be obtained
from such Green’s functions. The symmetry translates into a set of identities
for the Green’s functions, the Ward-Takahashi (WT) identities, which we
now derive. These identities are crucial in showing that matrix elements of
physical observables are independent of the specific gauge-fixing condition.

The action to be used in the functional integral, namely (10.80), satisfies
Q S, = 0. A representation of Q as an operator on functionals of the fields
in four-dimensional space is given by

6 1 6 )
. 4 a _ — pabc b c - na
0-— /d T [(DMC) Aﬁ 2f c’c Sea +1iB Soa (10.110)

Consider now the expectation value of a function of fields and derivatives,
say, O, which is not necessarily Q-invariant.
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(0) = /[dAdch] O(A,c,¢) exp(—84(4,c¢,©)

= /[dA/dc’dE’] O(A",d,&) exp (=84(A, &)
(10.111)

where we just renamed the variables of integration in the second expression.
We now take the primed variables to be the unprimed ones plus Q-variations,
i.e.,

AL = AL +w QA
@ =c"4+wQc*
& =" 4wQ (10.112)

where w is an arbitrary Grassmann number. If the measure of integration is
invariant, which it should be for consistency of the theory, we get

(0 = / (dAdedd] (O +60) exp (=S, — 5S,)
= (0) + (50) (10.113)

since 6§, = 0. O = (Q O) is the BRST variation of the operator 0. (On
the question of the invariance of the measure, see the chapters on anomalies.)
We can thus write the above equation as

((QO)) =0 (10.114)

We now consider the Green’s functions

Gz, 21,22, ..., TN) = /[dAdcdé] O(x) H(Qi(:vi) exp (—8y) (10.115)

where O; are Q-invariant. Following similar arguments to what was given
above, from (10.111) to (10.114), we find

(Q0) [[0i(z:) =0 (10.116)

This is the basic WT identity for the Q-symmetry. An immediate consequence
is that the S-matrix and matrix elements of gauge-invariant operators are
independent of the gauge-fixing condition. For instance, let f; and f2 be two
different choices for the gauge-fixing in §;,. We then have

Sy —Sp2 = /d4:v Q [e(fi — f2)] = Q Vio (10.117)

The Green’s function for a number of BRST-invariant operators O;(z;) cal-
culated with the gauge-fixing f; can be written as
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Gi(z1, T2, TN) = /e*&zl HOi(a:i)
= /e*S‘ﬂ*Q Viz H(Ql(:vz)
= /6_8q2 HOi(iﬂi) +/€_S"2(Q Ri2) H(’)i(:vi)

= Gg(l‘l,l'g,...,l']v) (10118)

where we have used the identity (10.116) in the last step and the fact that
eXp(—QV12) =14 Q R12, R12 = —V12 + %‘GQQ‘GQ + - ‘y which follows
from Q2 = 0. Eq.(10.118) shows that the N-point functions for Q-invariant
operators, and in particular gauge-invariant operators, are independent of
the gauge choice. The S-matrix elements, which are constructed from such
Green’s functions, are also independent of the gauge choice. The identities
for the change of the Green’s functions under a change of the gauge-fixing
condition are known as the Slavnov-Taylor identities. They were originally
expressed in a slightly different form.

The WT identities and the result that Green’s functions of @Q-invariant
operators are independent of the gauge choice are somewhat formal, as we
have derived them. In actual calculations, there may be divergences of inte-
grals which require regularization and suitable subtractions in order to make
the theory well-defined. If the regulator does not preserve Q-symmetry, we
may lose some of these results. There are three possibilities.

1) There exists a regulator which respects Q-symmetry and this is the one
used in the calculations.

In this case, the WT identities hold and the above arguments for the
gauge-independence of the S-matrix are true in the regularized, and ulti-
mately, the renormalized theory. (Symmetries other than the Q-symmetry
may be lost due to this regularization.)

2) There exists a regulator which respects Q-symmetry, but a different reg-
ulator which does not have manifest Q-symmetry is used.

In this case, the regularized theory does not have Q-symmetry; in par-
ticular, there are terms which are not Q-invariant with potentially divergent
coefficients. Counterterms to be subtracted do not have O-invariance, but it
is possible to choose them in such a way that the renormalized theory has
Q-invariance. The S-matrix is again independent of the gauge choice. (It may
not be possible to choose counterterms so as to preserve other symmetries as
well, they may be lost due to regularization.)

3) There exists no regulator which preserves the Q-symmetry.

In this case, Q-symmetry is definitely lost in the renormalized theory
and we say that the Q-symmetry is anomalous. “Unphysical” states can con-
tribute to matrix elements of observables and the theory loses unitarity in
general. In order to have consistent theories, we must therefore eliminate pos-
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sible sources of anomalies in the Q-symmetry. This can lead to constraints
on the allowed matter content of a gauge theory.

The WT identity for BRST-invariance can also be expressed in terms of
the generating functional I" for one-particle irreducible vertices. In this case,
it is convenient to consider the functional

eV = /[dAdchdB] exp (—Sq + / JUHAL + e + e

1
+(Dye) K — 5 fabecbee L + J“B“) (10.119)
W is a functional of the source functions J*, n, 7, K, L, and J. I is now
defined as
[lAce K, LJ] = /J‘”‘AZ—i-ﬁaca—l-E“n“ —w (10.120)

Here we do a Legendre transformation for J**  n* and 7%, but keep the other
sources. The WT identity is given by

0= / [dAdededB] Q exp (—Sq + / JHAL + et + 't

1
H(Dpe) K = 5 fabecbee e 4 J“B“) (10.121)

This can be written as
1
</J““(Duc)“ + ﬁ“§f“b°c”cc +iB*n“) =0 (10.122)

While we can write J*, n*, 7 in terms of derivatives of I" with respect to
the fields, we are still left with the expectation values of the operators B, D,c,
and f*°cbc®. The extra sources help to write these in terms of derivatives.
This was why they were introduced into the functional integral. We get

/d4 [5_F oF _ o' oI’ oI’ oI’} _ (10.123)

This is the basic identity; by functionally differentiating with respect to var-
ious fields and sources and setting them to zero, we get an infinite set of
relations among the vertex functions.

10.8 Renormalization of nonabelian theories

We now consider some aspects of the renormalization of nonabelian gauge
theories. For the choice f* = 0+ A* and with o = 1, the action (10.77) can
be written as
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Sq = /d4x

1
1AL = 0, A7) (A — 5" A

2
€ aoc a a cv € aoc famn cv m n
+5f PO AL — 0, AL) AP AT + =f be pamm AP A AT AT
+ 0, 0M " + ef0°0, e AP cC + %(a - A2 (10.124)

We have scaled the potential Aj; — eAj, which is convenient for perturbation
theory. All the operators involved in the action are of dimension 4. The prop-
agators behave like k=2 as expected and power-counting arguments would
show that potential divergences can only generate local terms of dimension
4. In order to establish renormalizability of the theory, one needs the follow-
ing.

1) A subtraction procedure, essentially Bogolyubov’s recursion formula, to
show that naive power-counting arguments do work.

2) The WT identities for gauge- or BRST-invariance which would show that
of all possible dimension 4 terms that one can write down, only those with
the tensor and group structures indicated in (10.124) do arise with diver-
gent coeflicients, so that the divergences can be absorbed by redefining the
coefficients of the various composite operator terms in (10.124).

The WT identities can be maintained by using a gauge-invariant regular-
ization such as dimensional regularization. One must establish rules for power
counting, separating overlapping divergences, etc., in such a regularization so
that it is evident that only dimension 4 terms are generated with potentially
divergent coefficients. If these conditions are satisfied, we can do calculations
in a nonabelian theory with the action

Z a a av 1% a
S, = /d% [f(&MAV — 0, A%) (9" AW — 0¥ A

ez, abc a a cv
5 [0 AL — 0, AL A A

62Z4 abc pamn Abu gcv pm gn 7 —a g .a
+Tf SO ATAY AT AY + 230,640 ¢
+eZ, f%¢0, e At + %(8 CAY)? (10.125)

where we naively put arbitrary renormalization factors for all composite oper-
ator terms. This can be split into a “classical part” S given by S, of (10.125)
wWith Zy = Zs =Z4s =71 =Z3 =\ = 1, and a counterterm action S; — S.
The counterterm action is defined as what is needed to cancel potential di-
vergences. If we have a regulator which respects the BRST-invariance, the
possible divergences and hence the counterterm action will have this prop-
erty. This can be seen recursively starting from the “classical action” & and



10.8 Renormalization of nonabelian theories 205

fixing counterms loop by loop. Thus if we are using a regulator which respects
the BRST-invariance, one can restrict the form of the counterterm action to
one which has BRST-invariance. The WT identities or BRST invariance will
then imply that, of the six renormalization factors Z1, Z3, Z4, Z1, Zs, A
only four are independent; i.e., one has the relation

Zy 71 Z
a2 (10.126)

Z1 23y Zs
A simple way to see how these relations arise is to define the BRST transfor-
mations

Q Aj = Ouc” + afabcAZcc
b
Q = _§fabccbcc
Qe =~0- A (10.127)

and require Q-invariance of the action (10.125). This will give aZ3 = eZy,
aZy = eZ; and aZs = 621, leading to (10.126). Notice that f“bCAZcc and
febecbee are composite operator terms in the transformations and as such,
they do, in principle, need renormalization factors, which we have denoted
by a, b. (They should not be confused with the Lie algebra indices.) From
Q% =0on Aj, b will turn out to be equal to a. We cannot impose Q?=0
on the antighost field ¢* since we have eliminated the B-field by its equation
of motion. Thus Q? will be zero on & only upon using the ghost equation of
motion. The Q-invariance of the action (10.125) will further give v Z3 = \.

Gauge theories in four dimensions, with or without spontaneous symme-
try breaking, are renormalizable. If one breaks gauge invariance explicitly by
adding a mass term 1m?A? to the Lagrangian, then we can lose renormal-
izability or unitarity. For example, for a massive Abelian vector particle we
have

1 m?

L= 4(8HA,, — 0, A,) (0" AY — 0" AM) + TAHA“ + matter terms
(10.128)
The propagator D, (k) for A, obeys the equation
[(K* +m*)0ua — kuka] Dav = 0 (10.129)
which has the solution
Dy (k) = D (ki /) (10.130)

k2 +m?

At large |k|, this behaves like k,k,/k? and so the ordinary rules of power
counting break down. One gets divergences corresponding to operators of ar-
bitrarily high dimension. The equations of motion for the Lagrangian (10.128)
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have a constraint 9- A = 0, which can help to get rid of negative norm states.
Alternatively, if one considers £ = %A#(—D)A‘L + %mQA#A“, the propagator
is well-behaved at large |k|, but the Ap-component does not decouple and
leads to problems with unitarity. The combination of the good features of
these two cases above, viz., having enough gauge freedom to eliminate pos-
sible negative norm states and the high-energy behavior of the propagator
being k=2, occurs for spontaneously broken gauge theories.

10.9 The fermionic action and QED again

The BRST argument leading to relations among the renormalization con-
stants can be extended to the case when fermions are coupled to the gauge
field as well. The transformations on the fermion fields are of the form

QY = iac® (t*Y)
QY = ia(Pt*)c (10.131)

(A priori, we could have a different constant, say, J, in these equations in
place of a; but Q% = 0 will show that ¢ should be a.) The fermionic part of
the action can be written as

S = /d4x Zo(y- 0 +m)p — ieZipy ALty (10.132)

With a regulator which respects BRST-invariance, we can again use a re-
stricted action where the renormalization constants are related. Imposing Q-
invariance on the fermion action (10.132), we get Z; = Z5. We can specialize
these results to the case of quantum electrodynamics which is a U(1) gauge
theory. We have already seen the relation Z; = Zs by explicit calculation at
the one-loop level. Here we see that it will hold in general.

10.10 The propagator and the effective charge

As an example of one-loop calculations in a nonabelian gauge theory, we shall
now calculate the gauge boson propagator to one-loop order and relate it to
an effective charge.

The basic one-loop diagrams we need are
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Fig 10.1. One-loop corrections to gauge boson propagator

(The dashed lines represent ghost propagators.) These diagrams will lead to
divergences and so they have to be regulated. Although we used a straight-
forward momentum cut-off previously, the present calculations are rather
invloved and can be simplified significantly by choosing a gauge-invariant
regulator such as dimensional regularization. The basic idea here is to do the
calculations in an arbitrary dimension n = 4 — ¢, where € is taken to be very
small. This is done by analytic continuation of various expressions to an ar-
bitrary dimension. Integrals involved in Feynman digrams are well defined as
a function of n, with poles at n = 4 corresponding to the divergences in four
dimensions. The idea therefore is to do a Laurent expansion in €, identify the
pole terms, which are then canceled by choice of Z;-factors, and then take
the limit ¢ — 0. Since the concept of gauge-invariance does not depend on
the dimension, this will be an invariant regularization. We will use such a
procedure here.

In using dimensional regularization, we first do the algebraic simplification
of the integrands of Feynman integrals, keeping in mind that we are in n
dimensions when contracting indices and taking traces. For the basic type of
integrals involved, we can carry out the integration in n dimensions to obtain
the following formulae.

/ d"p 1 1 I'(a—n/2) 1

Cr WP mr P Tl) (PP

d"p p? n 1 I'la—n/2-1) 1
/ @) (M2 2 (42 T(a) (M)
/ d"p puPv 6w 1 I(a—mn/2-1) 1
@mr P+ M2 2 (4mn2 T(a) (M)

(10.133)
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where I" denotes the Eulerian gamma function. The relevant Laurent expan-
sion can be obtained by using the property zI'(z) = I'(z + 1) and

I(e/2) = % — 7+ 0(e) (10.134)

v is the Euler-Mascheroni constant, approximately equal to 0.5772.

Contribution of diagram 1

By writing out (e~%t) = e~!" and carrying out the necessary Wick con-
tractions, we obtain the contribution due to the first diagram as

Fiin = "5Ca [ Glo.0)45(0)43(0) (10135)

where C is the quadratic Casimir invariant for the adjoint representation of
the group. It is defined by Cyd%? = famn fbmn and for the group SU(N) it is
equal to N

Contribution of diagram 2

The second of the Feynman diagrams shown arises from

=g (o) o ([ raate)

(10.136)
Carrying out the Wick contractions, we find

1
Lgiago :CQ/ 1

— %AZ(I)AZ({E)G(ZC, x)

@15 )G e, 0)Ce0) + £, 0) 4500 2 G )

5@ a0 { (0 - 2D ICI | (o) EEED y>}]

(10.137)
where f, —0,A7 — 0, A,
Contribution of diagram 3, the ghost loop
The ghost loop contribution is easily seen to be
_ O [ e gagy 9G(@y) 0G(2,y)
Ljiags = 7/Au(x)‘4v(y) Do B (10.138)

Contribution of the first three diagrams
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Combining (10.135, 10.137, 10.138), we obtain

r=enCy [ | P2 A0 4006 . 0) - 110 )6l 0)G )
+ 120450 5 6 )
n—2 ., " 0G(z,y) 0G(z,y) 0*G(x,y)
- AM(:C)AU(y){ (%#y (%Uy - 8:1:#8;5 G(:c,y)}]
(10.139)

where f7, = 0,A} — 0,Aj,. Each of these terms carries a factor €2, where e
is the coupling constant. This is seen by the rescaling A — eA. However, in
dimensions other than four, the coupling constant is not dimensionless, €2 in
n dimensions has the mass dimension 4 — n = €. We introduce a parameter
p with the dimensions of mass and write 2 = e?u€, where e will be the cou-
pling constant in four dimensions. The factor of u and the four-dimensional
coupling constant e? have been explicitly indicated in (10.139).
For the first of the integrals we find

n—2 n—2 d"p 1
G =
;G == / (27)" p2 + M2

M=0
1 n-2 2—n e
ERCRERE F( 2 )(M2)1 /2]

M=0

=0 (10.140)

M=0

The integral vanishes at finite € and hence can be taken to be zero in the
regularized theory. Naively this integral is quadratically divergent; it is a
peculiarity of dimensional regularization that quadratic divergences do not
appear and such integrals can be set to zero. (This does not mean that all
consequences of quadratic divergences disappear from a dimensionally regu-
lated theory; there are examples of dimensionally regulated theories where the
quadratic divergences can reappear if some summation of the perturbation
series, such as Borel summation, is attempted.)
The second term in (10.139) is

Term 2 = 6_2/]('(1 (.I) a (y)/ d*k eflk(zfy)H(Q)(k)
1 ) I W) [ oo

& (k) = _(Mz)éﬂ/ (ZZI)?” pz(pl— k)?
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1 dr 1
2\e/2 w p
A e e

S /01 du T(¢/2) exp E log <%>}

1 2
= _W |:Z —v+24+ 10g47r — 10g(k2/u2)] (10.141)

The third term can be evaluated similarly and is equal to the second term
given above. The last two terms become
d"k

Terms (44 5) =e /A“ VA% (y )/ e~ h(@=y) [ra+5) (k)

—2pupy + kukou(l — 2u)
H(4+5) k 6/2 2 / d / p .
(k) = (5P =e/2) |- du PR+ k2u(l — u))?

= (k*0,0 — kuky) = — v+ logdn — log(k?/p?) +

9671'2 [ € 3

(10.142)

Combining terms, the one-loop contribution to the quadratic term in the
effective action becomes

1 a a —tk(x—
r=1/ fa@me e nw
x,y,k

202 |:

k) = — 152

5 (— —~y+logdn — log(k?/u? )> 391]

(10.143)

Contribution of fermion loops

We also consider Ny species of fermions in the fundamental representation
of the group coupled to the gauge fields. The fermion action is given by
S = q[y:(0+A)+m|q, where A, = —it*A},. t* are matrices in the fundamental
representation and are a basis of the Lie algebra. For SU(N), they can be
taken as traceless hermitian (N x N)-matrices. We have Tr(t"t") = $6°°. The
y-matrices obey Try#~” = 2"/2§#”  The one-loop contribution to the term
in I which is quadratic in the A’s is

1 —ik(z—
r=1 / AL @A) ¢ T ()
x,Y,

2
1
,,(k) = 2Ny 2”/271@2)6/2/ du
0
" / d"p 2pup, + (5uvk2 — 2kyky)u(l —u) — 5W(p2 +m?)
(2m)™ [p? + k2u(l — u))?
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k26, — k. k) [*
= Ny (H—Qu)/ du u(1 — u)
47T 0

2 kKu(l — 2
x [— —y+log2r — log (”(—;‘Hmn (10.144)
€ 1

With this explicit formula for the integral, the fermionic contribution to I’
can then be simplified as

1 a a —ik(x—
Ir= 1/ ,uu(‘r) ,ul/(y)e *e-y) Hf(k)
z,y,k

2Ny [ 2
Hf(k):e47r2f/0 du u(l —u) [€—7+10g27r - 1og<

k2u(1 —ug) +m2)]
(10.145)

The effective action to the first order in % also has a contribution from
the Zs-factor in (10.125). The quadratic term in I, to first order in £, is thus

1 a a —ik(x—y
r=q ) @ wete v
V(k) =73 + Hf(k) + H(k) (10.146)

It is clear that one can choose Z3 so as to cancel the 1/e-term, so that the
limit n — 4 can be taken without divergences. This shows the renormalization
of the gauge-particle propagator to one loop order. It is possible to absorb
some of the constants, namely, k-independent terms, in Z3 as well. Exactly
how Zj3 is defined is a choice of the renormalization scheme. Notice that the
differences can be taken to be different definitions of u. One scheme, known
as minimal subtraction, eliminates only the 1/e-terms by choice of Z3. For
our purpose it is easier to get rid of all the constant factors by a suitable
choice of Z3. This corresponds to

5Cy — 2Ny (2 31e?Cy  e*Nyslog2
Zy=1+4+2222 "2 (2 1og4 -
s T R ( T8 ”) v 2472
5¢2Cy 5, o €Ny (1 k2u(l —u) + m?
(10.147)

For zero-mass fermions, which is what we shall consider for the rest of our
discussion, we can take Z3 as the expression given above minus 5Ny /727?;
we absorb the integral of u(1 — u)logu(l — u) also into Z3. Then

o2
4872
From the calculation given above, the corrected gauge-particle propagator is
of the form

V(k)=1+ (5Cy — 2Ny) log(k?/u?) (10.148)
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~ 1 1

Gk) = V(R (10.149)
Among other things, this shows that the quantity p which was introduced
for dimensional reasons can now be interpreted in a more physical way. It is
the value of momentum transfer k at which V(k) = 1 and the propagator is
just 1/k2.

The interaction between fermions due to the gauge-particle exchange is

given by

62 ~
r=< /fﬁ"wq(w) qt"vuq(y) G(z,y) (10.150)

In the case of QED, we interpreted the modified interaction as an effective
increase of the strength of interaction with k2, or as a k-dependent effective
charge. In the present case, such an interpretation is possible, but the situa-
tion is not quite so simple. The reason is that there are other diagrams which
contribute to the interaction between fermions, such as vertex corrections.
For QED, these other corrections are of the form shown in figure 10.2.

Fig 10.2. Corrections to fermion-fermion interaction by gauge boson
exchange

The WT identity connects the vertex correction and fermion self-energy and
in effect their contributions cancel out; they do not contribute to the effec-
tive charge. This is true in the nonabelian case as well. But in the nonabelian
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theory there is another contribution given by the diagram 10.3, shown below.
There is a part of the mathematical expression for this diagram which is sim-
ilar to the propagator contribution and it must be included in the definition
of the effective charge. The expression for this diagram is given by

Fig 10.3. The diagram for the pinching contribution

I =etfobe / q(@)t" vuq(x) Gt Fu(y, 2)q(2)

) - 1 dnp’ 1
F S ik(z—y)+ip (z—y)_/
“(y’ Z) /]C ¢ k2 (271.)71 p/z(p/ + k:)2

(v-k=~-0)S,2)

— S (Y, 2)(27 -k +v-p') + (2p), + ku)vaS(y, 2)%] (10.151)

The integral has an interesting feature. By writing —vy - p/S(y, 2)e®'v =
—i7y - 8(e”™®'Y)S(y, z), we can do a partial integration over y. This will pro-
duce a term v - S(y, z) which is i times a delta function, i6™ (y — ). Such
terms are called pinching terms, since the points y, z become identical, which
can be visualized as the fermion propagator line being pinched off the di-
agram. This pinching contribution is what we are interested in. The other
terms, including derivatives with respect to y from the partial integration,
involve either powers of p or k and do not lead to a current-current inter-
action structure. Therefore, even though they can be important, they are
not relevant for the effective charge. After some algebraic simplifications, the
pinching contribution due to (10.151) is seen to be

e? . |
I'= E/Q(x)ta%w](iv) Cj(y)ta’yuq(y)/% ezk(z—y) F(/{,‘)
27, 2\€ 2202 dn / 1
F(k) =e*(p*) / ?/ (271—1))71 P2 + k)2

6202 2 2 2
=522 | T — v+ 2+ logdn —log(k®/u*) (10.152)
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The 1/e-terms and the constant terms can be canceled by choice of the vertex
renormalization in this case. By combining this result with the propagator
contribution in (10.149, 10.150), we get the effective current-current interac-
tion as

1 — —
Tepr=3 / qt"vu.q(x) qt*v.q(y) Vers(z,y)

e2 e2 9, o -t e2Cy 9, 9
Virs(h) = 5 | (14 5 06C - 2N loulh/i)) = 2 0802/
2 —1
~ 21+ (110, — 2N log(K2/122) (10.153)
2N EPTTCR '

We now define the nonabelian analog of the fine structure constant as o =
e?/4n. We can then write

7T04(/€)
12

Verp(k) =4 (10.154)

where the effective coupling constant which is a function of k2 is identified as

B a(p)
a(k) = [T+ alp) b log(k2/u2)]
_ HC:— 2Ny

10.155
127 ( )

The effective charge in QED was seen to increase with the momentum
transfer k. In the present case, we see that « actually decreases with increas-
ing k so long as the number of species of fermions is not too large, so that
one has 11C5 > 2N;. This means that at high energies the theory asymp-
totically approaches a free theory; this property is called asymptotic freedom
in the terminology of the renormlization group introduced in Chapter 9. The
discovery of asymptotic freedom in 1973 was the crucial step in using non-
abelian gauge theories to construct a theory of strong interactions. Quantum
chromodynamics (QCD), which describes strong interactions, is an SU(3)
gauge theory coupled to quarks which are in the fundamental representation
of SU(3), namely, triplets. In this case, Cy = 3, and asymptotic freedom is
possible if we have fewer than 16 species of quarks. There are six species
known to date and there are reasons to believe that there are no more than
six species. Asymptotic freedom is observed to hold for energies above a few
GeV. At such energies, the quark mass terms in the above formulae cannot
be neglected, the masses suppress their contributions in loop integrals. As a
result very high mass quarks do not contribute to effective charge and so, in
any case, the possible existence of very high mass quarks, beyond those we
know, will not affect asymptotic freedom at presently observed energies.

The effective charge may be regarded as the running constant obtained by
solving the renormalization group equation. Since we have done a calculation
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of the effective charge directly, we can use this to obtain the S-function for a
nonabelian gauge theory, to one-loop order, as

3
6(6) - _487T2
The p-function is negative, as expected for asymptotic freedom. Here we have
obtained the (-function after calculating the effective charge. Going back to
the action (10.125) and writing it in terms of bare fields, we see that the

(11C5 — 2Ny) (10.156)

bare charge eq is related to the renormalized charge e as eg = Z1Z5 8/ 2 This
shows that we can calculate the g-function, by evaluating Z;, and using this
formula and the definition (9.121); we have already obtained Z3. This is the
more conventional way of calculating the S-function in a nonabelian theory.

The behavior of QCD at high energies may be understood by solving the
RG equation for the Green’s functions, using the S-function (10.156). One
can use perturbation theory to compute the required anomalous dimensions
by virtue of asymptotic freedom. Applications of perturbative QCD to high
energy scattering processes, which is a vast subject in its own right, are based
on this property.

The formula for the effective charge shows that we can define a finite,
dimensionful parameter Agcp by

1 blog Agen ) _ 0 (10.157)
a(p) p? '
In terms of Agcp, the effective coupling may be written as
1
ak) = —5——
blog(k?/ A% 0p)

127
_ 10.158
(11C2 — 2Ny) log(k? /A p) ( !

We see that the coupling constant is entirely determined by Agcp. The
dimensionless coupling a(u) had been traded for a dimensionful parameter
Agcep. This is known as dimensional transmutation. Agcp determines the
relevance of various kinematic regimes and how they have to be analyzed.
Modes of the field with values of k much larger than Agcp are weakly coupled
and one can use perturbative analysis; modes with k comparable to, or less
than, Agcp, have to be treated nonperturbatively. Agcp is thus the basic
scale parameter of the theory. The theory does not choose any value for
Agcep; it is an input parameter for the theory. The fact that we have this
freedom is a residue of the classical scale invariance of the theory.
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11 Symmetry

11.1 Realizations of symmetry

We will begin with the discussion of continuous symmetries. In Chapter 3,
we saw that, if a Lagrangian has a continuous global symmetry, then there
is a conserved current J;‘ and a conserved charge Q4 associated with it.
Here A takes the values 1,2,---N, where N is the number of continuous
symmetries. The charge Q4 is conserved, which implies that it commutes with
the Hamiltonian; i.e., [Q4, H] = 0. This also shows that [Q4, Q”] commutes
with H and so leads to new conserved charges. If we have already included
all the conserved charges, the commutator [Q4, QP] must be a function of
the Q’s themselves.

We begin with the case of the @’s generating an internal symmetry. Let |«)
be an eigenstate of H with eigenvalue E,, H|a) = E,|a). Since [H, Q4] = 0,
H (Q%4a)) = E, (Q%|a)). Thus the action of Q4 on a state gives another
state which is degenerate with it. By applying Q’s on |«) many times we get a
sequence of states which are degenerate with it. This process can be continued
until no new states are generated and further applications of Q)’s only produce
linear combinations of states already included. This leads to a set of states
generated in this way from |«) and which is closed under the action of @Q’s.
Let ‘H, denote the subspace of the Hilbert space corresponding to this, and
let {|o;;)} be an orthonormal basis for this subspace. Then Q%|a;) € H,
for |a;) € H,. Thus we get a matrix representation of Q4 on the subspace
Ho by (Q4)i; = (a;]Q?|a;). This forms a representation of the algebra of
the @’s under matrix multiplication since the @)’s do not connect any state
in ‘H, to any state in the complement of H,. This representation is also
irreducible by construction since any state in H, is connected to the others
by suitable Q-actions. Since the @’s are also realized as hermitian operators,
this is a unitary irreducible representation (UIR). By carrying out a similar
procedure with the other eigenstates of H, we see that the states of the system
can be grouped into UIR’s of the algebra of the symmetry operators.

This result holds for discrete symmetries, such as parity, as well. When we
include continuous spacetime symmetries such as the Poincaré transforma-
tions, the Hamiltonian H does not commute with them, but becomes part of
the symmetry algebra. In this case, the states again form UIR’s of the sym-
metry algebra, including spacetime symmetries. The states within each UIR
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are degenerate, not for eigenvalues of the Hamiltonian but for eigenvalues of
some invariant operators. (The representations are also infinite dimensional
when spacetime symmetry, which is a noncompact symmetry, is included.)
Our discussion of relativistic invariance in the appendix is an example of this,
where the representations are labeled by mass and spin.

This nice result can be vitiated if Q“|a) is not normalizable and hence
does not belong to the Hilbert space H. In this case, we do not have a unitary
representation of the symmetry and it is said to be spontaneously broken. To
understand this structure better, we start with the fact that, in field theory,
the states are generated by the application of various local operators on the
ground state or the vacuum state |0). We can therefore write |a) = A,|0).
From the commutation rules, we can evaluate [Q4, A,] = B2. BA|0) will be
some other local operator in the theory. Generally, the normalization of the
states A,|0) and B#|0) will have to defined with some regularization; with
this understood, we may take them to be normalizable. We now write

Q*|a) = BL|0) + Aa Q7)0) (11.1)

If the ground state has the symmetry, viz., if @4]|0) = 0, Q“4|a) is normal-
izable in the sense defined above, and it is clear that our argument of the
previous paragraphs will go through. States can be grouped into UIR’s of the
algebra of symmetries. The contrapositive of this statement is that if Q*|a)
is not normalizable, the vacuum cannot be invariant. Thus, spontaneous sym-
metry breaking corresponds to the situation when we have symmetry at the
level of operator algebra, but the vacuum (or ground state) is not invariant.
There is no unitary realization of the symmetry algebra.

The discussion so far indicates that there can be two realizations of sym-
metry in quantum field theory, which can be summarized as follows. If a
Lagrangian has a continuous global symmetry given by a set of operators
{QA} forming an algebra A, we have two possibilities.

1. The ground state is symmetric, @Q“|0) = 0 and the states can be grouped
into unitary irreducible representations of A.

2. Q4]0) # 0; in this case the symmetry is spontaneously broken and there
is no unitary representation of the symmetry.

The first case is often referred to as the Wigner realization of symmetry
and the second as the Goldstone realization of symmetry. (Spontaneous
breaking of discrete global symmetries is also possible. A field-theoretic way
of implementing the spontaneous breaking of discrete symmetries will be clear
from what follows, although we do not discuss them in detail.)

In the real world, ignoring gravitational and cosmological effects, we have
Poincaré symmetry. This is realized in the Wigner mode since the particles
we observe fall into UIR’s of the Poincaré group. (This has been used to
construct relativistic wave functions in the appendix.) For this to be possi-
ble, the vacuum state must be Lorentz-invariant and this justifies the use of
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Lorentz symmetry to eliminate the zero-point energy in Chapter 3. We dis-
cuss Wigner realization of symmetries in this chapter; spontaneous symmetry
breaking is taken up in the next chapter.

11.2 Ward-Takahashi identities

In quantum field theory, the quantities of interest are the Green’s functions.
In the Euclidean formulation, these are generated by

ZM—Nﬂwuw(6m+/uw) (11.2)

where [dy] is a suitable measure for functional integration over the fields ¢*.
If the theory has a certain symmetry, it manifests itself as relations among
various Green’s functions. These relations, known as Ward-Takahashi (WT)
identities, can be derived as follows. Since ¢ is a variable of integration in
(11.2) we can write

/[dcp’] exp (—S[so’] +/JA<p’A) = /[dw] exp (—S[so] +/JAs0A> (11.3)

We shall first consider continuous transformations. Let ¢(x) — () +&(x, ¢)
under the symmetry transformtion of interest, where £(z,¢) is considered
infinitesimal. The strategy is to choose the new variable of integration ¢’
in (11.3) as ¢ + £. Under this transformation, the measure of integration
transforms as

[dy'] = [dp] det M = [de](1 + 6T) (11.4)

where
MAB(z,y) = 6485 (2 — y) + %‘T(y‘;’)
_ oy (96 (=)
7= (%) (11.5)

(Tr denotes the trace over the indices A, B as well as a functional trace; in
other words, we take a trace considering (A, z) and (B, y) as matrix indices.)

We also have S(¢’) = S(¢ + &) = S(¢) + d¢S. Using these in (11.3) and
collecting together terms which are of the first order in £, we get

(—0:S + /JAgA 4 8T) =0 (11.6)

where the angular brackets denote the functional average

(©) =N [ldglexp (~=Sl¢) + [ ag™) © (11.7)
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Equation (11.6) is the basic Ward-Takahashi identity. This can be trans-
formed into an infinite set of relations among all the Green’s functions by
expansion in powers of J4. We shall illustrate this by examples.

Consider a theory of N scalar fields ¢*, a = 1,2,---, N, with the Eu-
clidean action

1 1
S = /d4x bw“&p“ + §m2g0“<p“ + Mpp®)? (11.8)

This theory has invariance under the transformation
0% — P P+ wab@b (11.9)
where w® is antisymmetric in a,b and independent of z*. We may write
w?® = wA(T4)% where (T4)®, A =1,2,---,4N(N — 1), are generators of
O(N), the set of orthogonal transformations in N variables. Thus (11.8) has a
global O(N) symmetry. The symmetry is global, as opposed to local, because
the parameters are independent of x*.
We now consider the change of variables ¢%(x) — ¢*(z) + w®(x)¢®(x)
in the functional integral. (For the symmetry (11.9), the parameters w?®
are independent of spacetime. To obtain the Ward-Takahashi identities, we

consider a change of variables with w® which are functions of x*.) In this
case

0S8 = —/a#w“b(wawpb)
= /wab D, (90" ") (11.10)

For the change of variables p%(z) — ¢'*(x) + w®(x)¢’(x), the matrix
M®(z,y) = (6% + w®(x))6® (x — y). The Jacobian is thus independent
of ¢ and since the determinant of an O(N)-transformation is 1, it is possible
to regulate in such a way that §7 = 0. The general identity (11.6) becomes

(= 0u(p 01" — ") + JUb — Jhp") =0 (11.11)

Writing Z[J] = e"/!| we have

o [ow  ow 0 52 W
“aur (5@ 5w o LJ@@)M@)LJ Sl
—i—Ja(x)% (e b) =0

(11.12)

By expanding W[J] in powers of J,, this becomes a set of relations among
the connected Green’s functions of the theory.
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If we now take w® to be independent of z#, then 6S = 0, and we get

/d% <Ja(x)% - Jb(x)%> =0 (11.13)

Written in terms of I'[¢], using J, = 6I'/dp“, this equation reads

or or
4 a 1 —
/d @ (@ s ? 5@) 0 (11.14)

In other words, the quantum effective action I'[$] has the same O(N)-
symmetry as the classical action.

11.3 Ward-Takahashi identities for electrodynamics

We now discuss the WT identities related to gauge invariance in quantum
electrodynamics. Calculations in QED are done by functional integration over
the Euclidean action

SE(A,J),W:/ &z %FWF‘“’ + %(a . A)?

+Z5 [1/7 (v-0+m—dm)y — ieer‘%/)A#]
(11.15)

In general, we have Z; and Z5 in the fermionic part of the action, but we
have already seen in the last chapter that when we have a regulator which
preserves the BRST invariance, we can set Z; = Z5. We have assumed this
in the above expression.

This action does not have gauge-invariance due to the gauge-fixing term
(0 - A)2. Thus one can only expect BRST-invariance and the associated WT
identities. Nevertheless, it is possible to obtain WT identities for gauge trans-
formations using the action (11.15). Their derivation will be slightly more
involved than in the case of BRST identities, but they have the simplicity
that we do not need the full formalism of the BRST-transformations.

We start with the functional integral

Z[J, 70 = /du[A,WE] exp (—SE<A,w,w)+/J-A+nw+wn>

= /du[A’,w’ﬂZ'] exp (—SE(A’,W,W)+/J-A'+mﬁ'+w'n)
(11.16)

where in the second step we have made a semantic change of variables, just
renaming the variables of integration. We now take the new variables as
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A =A+0,0
’(/Jl — eie@ ’Q/J
W = et (11.17)

This is now substituted into the second expression for Z[J,1,v] in (11.16)
and taking 6 to be small, we collect the terms which are of the first order in
0. If the measure of integration is invariant under this set of transformations,
we get

(—A/@-A829+/J-86‘+ie/(77w—z/777)9>:0 (11.18)

Introducing log Z = W and the generating functional for the 1PI vertices,
namely, I'[A, 1, ¢] by

W J,n,q) = —F[A7¢715]+/77¢+1577+J-A

or

Jh =

dA,

or or
= = — o 11.19
=55 =% (11.19)
we can rewrite equation (11.18) as
or -6 or
[ 2 . - —_— ) —_— —_— =

)\/988 A—i—/a@ 5A zeﬁ[wéwﬁ-gww} 0 (11.20)

(Here Au,w,iﬁ are independent fields and not variables of integration as in
(11.18).) Since I' is a functional of the fields A, ,, its change under an
infinitesimal gauge transformation (11.17) is given by

59F:/89-5—F+5J) 6—F+6¢5—F

JA 51 o
or — oI or
- [ Sr-ieo|i g v 5]
or . A YA
_/80'ﬁ_169[¢5_¢_}+ww] (11.21)
Equation (11.20) can thus be written as
A 2
b [P =5 [©@-47| =0 (11.22)

If we define I'* by
I=rI*+ %/(a - A)? (11.23)
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equation (11.22) shows that I'* is gauge invariant. If we expand I" or I'*
in terms of vertex functions, this translates into an infinite set of identities
connecting various vertex functions.

As an example, consider the two-point term in I'™* given as

1@ = [ 4,V @) A0) (11.24)

The invariance of this expression under infinitesimal gauge transformations,
namely, equation (11.22), gives us immediately

0, V¥ (z,y) =0 (11.25)

Writing Vi, (7,y) = (=0 6 + 9,0,)6W (x — y) + I, (z — y) and taking
Fourier transforms, this is equivalent to

K, IT* (k) = 0 (11.26)

Lorentz invariance requires that 1, should only be a function of k?; along
with the transversality condition (11.26), this gives

My = (K6 — kuk,) (k) (11.27)

As another example, consider the terms involving 1) and ¥ A; these
can mix under gauge transformations, so we must consider them together.
We write

19 = [ gl 0(e) e [HVal 440 + - (1129
The invariance of this under an infinitesimal gauge transformation gives
ie | [ 66) = 000 5@ P 06) + [ 0D 50 Vi o )
—e* [ 0@) = 0 6@ Vi, 90 A )+ =0
(11.29)

Setting the coefficient of the 1)1 term to zero, we get

0
a—y#VM(:v,y,z) =0 (11.30)

F(z,2) (80 (z = y) = 6Dz —)) +
For the terms involving A* in (11.29), we need to consider the variation of
terms involving two A’s; so we cannot set the coefficient of this term, as it is
written in (11.29), to zero. In (11.30) we introduce the Fourier transforms
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Vale2) = [ Valp.gee e
P.q

F(x,2)6M(z —y) = / F(p)e@—v)e—ia(z=y)
P,

s

Flz,2)0W(z —y) = / F(q)eP@=v) gmiaz=y) (11.31)
P.g

In the last two equations, we recover the usual forms if we make the replace-
ments ¢ — ¢+ p, p — p + g, respectively. Using (11.31), we can simplify
(11.30) as

F(p) — F(q) +i(g —p)"Vulp,q) =0 (11.32)
Expanding this equation for small values of ¢ — p, we get the equation
oF .
o T iVu(p,p) =0 (11.33)

Equations (11.32) and (11.33) are the forms in which the WT identities were
originally obtained. Since F'(p) = iy-p+m+X(p), and V,(p, q) = vu+1u(p, ),
we see that these equations give an identity relating the electron self-energy
XY (p) to the vertex correction I, (p, q).

11.4 Discrete symmetries

We now discuss some of the discrete symmetries of a gauge theory. These will
include parity, charge conjugation, and time-reversal. When used in conjunc-
tion with the WT identities expressing the gauge-invariance of the effective
action, these can be very powerful in restricting the form of the action (and
the effective action) and can lead to low-energy theorems which are of general
validity, not necessarily restricted to perturbation theory.

In the terms of functional integral representations, discrete symmetries
can be understood as follows. Let ¢ denote the transform of the field vari-
able ¢ under the discrete symmetry like parity, charge conjugation or time-
reversal. This means that the Green’s function

G=N / (dg] €5€) 3(e1)p(z2) - Plan) (11.34)

will describe the time-evolution of the transformed particle states. If the
action has the property that S(¢) = S(¢), and the measure has thus property
as well, then we can write

G=N / (dg] €5¢) 3e1)p(aa) - Glan)

—G=N / [d@) €SP G(a1)@(2) - (o)
_c (11.35)
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since the change ¢ — ¢ is reduced to a semantic change of variables in the
integral. We will now work out these transformations for parity, charge con-
jugation, and time-reversal. Some of these symmetries require the Minkowski
metric and so in this section we shall use the functional integral in Minkowski
space.

Parity

Parity corresponds to  — —x. On Dirac spinors this is implemented by

Y(x,t) =y (—x, 1) (11.36)

where x(x, t) is the parity image or parity transform of ¢ (x, t). On the gauge
field, parity is given by
AO(mv t) = 1210(—.’13, t)

Ai(:c,t) = —Ai(—:v,t) (1137)

where the tildes denote parity transforms.
We can check the parity invariance of QED by checking the various terms
involved. As an example, consider [y - dt. Writing & = (—x,t), we find

/ d*z Pivy - O = / d*z XT(2)iy" 0,7 x (%)
_ / d'z X (@)i(8 — 1°7'0;)x(7)
- /d4x x(i)iv“a%#x(f)
— [ @' xiv9,0, (11.38)

(The change of limits compensates for the replacement of x by Z in the
measure of integration.) Equation (11.38) shows the parity invariance of the
kinetic term of the Dirac Lagrangian.

For the standard bilinear covariants of the Dirac theory, we have the parity

property
(@) = (@)
7Y (r) = =X x(2) (11.39)

Py (z) = X7"x(Z)
Py P(z) = —x7'x () (11.40)

15_70_751&(96) = —27075X(i)
VY'Y Y (x) = X' X (&) (11.41)
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¥ [V, (@) = —x [v°,7] x(@)
¥ [y (@) =x [V ] x(@) (11.42)

Thus 91} is a scalar, Y71 is a pseudoscalar, Py/1) is a vector, Py#45¢ is an
axial vector, and ¥[y*,v"]¢ is a rank 2 tensor.
The definition of parity (11.36) shows also that

(1 £ (@, 1) =20 (1 F4°)x(—=,1) (11.43)

Thus the chiral projections v = %(1 + %) and Y = %(1 — ¥5)y are
transformed into each other under parity. A theory which has only one type
of chiral fermions or a theory in which there are gauge fields which couple only
to one type of chiral projection (e.g., 4,1y (1++°)y ) will necessarily violate
parity invariance. The standard model of weak interactions is an example of
such a theory.

Charge conjugation

This corresponds to the exchange of charges, for example, e™ < ¢, in
any process. It is given by

U(x) = O (z)
Au(x) = —A,(x) (11.44)

where C' is the charge conjugation matrix defined by
CiymC = 41T (11.45)

Recall that the y-matrices are defined by the algebra
YA+ =291 (11.46)

By taking the transpose of this equation, we see that v#7 should also obey
the same algebra. Therefore, by the general theorem on the Clifford algebra
mentioned in Chapter 1, we see that there should exist a matrix C with
the property (11.45). The specific form of the matrix C' will depend on the
representation chosen for the *. For the choice

0 __ 1 0 i 0 O'i

C = iv"?, cl=—c=ct (11.48)

we have

In this case, we can also write 1(z) = C%x*(z) = —iv?x*(x) as the trans-
formation of the fermion field.

Based on the rules given above, the C-invariance of any term in a La-
grangian can be easily checked. For example, consider the electron kinetic
term in QED.
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Py - (0 —ieA)h = xTA0C T4+ (0, + ie[lu)C*yox*
= X" T TAO(0, + ieAL) X
= —0,X"""x — ieAx v v x
= -0, Xx7"x — ie[l#)_(y“x (11.49)

where we have used (11.45). Notice also that in the third step we get an extra
minus sign in rearranging x” and x* because they are Grassmann-valued. In
the action, we can do a partial integration to get

St0.0) = [t b i@ ieays
= /d4:1c i [—8@’('7”)( — ie;lu)’('y“x}

= [t i [pro. - iedy
= S(4,x,%) (11.50)

The C-invariance of the other terms in the Lagrangian can be checked in a
similar way. For the standard bilinear covariants we have

Ph = XX
Py = x7°x
Pytp = —x '

Py = x*y°x

YA = X[V A (11.51)

Notice that C~145C = 45T using v° = 7071243,

When there are nonabelian gauge fields, the notion of charge conjugation
involves conjugation in the Lie algebra as well. Consider, for example, the
term z/?v“AMz/J, where 1 transforms as some representation of the gauge group.
1 is a column vector on which the Lie algebra matrices t* can act as a linear
transformation. 4, = —it*Aj, and t* are the generators of the Lie algebra in
the representation corresponding to . Using the charge conjugation property
(11.44), we have

—i Al = —i A% xTAPCT09# 100
— _iAZXT,YO,yOT,yuT,YOtaX*

=i A%x Ty 9T (11.52)

This term will have invariance if we define the charge conjugation prop-
erty of the gauge field as t*Aj, = (—taT)AZ; in this case, —iAjYyHtiy =
—ifl,‘j)‘(y“t‘lx. This definition of charge conjugation corresponds exactly to

conjugation in the Lie algebra. Writing the Lie algebra commutation rules as
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[t2, Y] = ifeb°t) we see that if t* form a matrix representation, then so do
—t%T The transformation t* — —t%T" is an automorphism of the Lie algebra.
In terms of representations, this corresponds to replacing a given representa-
tion by its conjugate. Thus Ajjt® = flﬁ(—t“T) is indeed the correct definition
of charge conjugation.

Time — reversal

Time-reversal transformation is defined by (x,t) — (x,—t) = Z. The
time-reversal transformation of fields is given by

V(@) =1"Cx" (@, 1)
Ao(ilt, t) = Ao(ilt, —t)
Ai(x,t) = —A;(z, —t) (11.53)

Time-reversal is an antiunitary transformation. In terms of operators, this
means that if A, B denote the transforms of operators A and B, then AB =
BA.

Consider now the change of various terms in the action in the functional
integral for QED under (11.53) viewed as a change of variables. It is easily
seen that the bosonic terms are invariant, i.e., S(A) = S(A). For the kinetic
term of the Dirac action, by rearrangement of fields and a partial integration,
we find

/ d*z iy - (8 —ieA)p =i / d*z |xTC15 Y0419, Cx*

—iexTCTy 091y Cx* A,

=i [ d*z [x"7"1°0.x + iexTv"7 xA,]

z/d4x (v900 — 7'0;)x +iex(v Ay — WiAi)x]
4 0 m
d'x XV g +iexy" Au(E)x

_ /d% {)‘((5:) iyt <a%u — ie[lu(j)> x(i:)}

—/d4x X iv"(8, —ieA,)x (11.54)

In the last step, we renamed the variable of integration z as x. We get the
same term with the time-reversed fields substituted in, but there is an extra
minus sign. A similar result holds for the mass term in QED, so that for the
whole fermionic part of the action we get

S(A %, 9) = =S(4,x,%) (11.55)
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This change of sign is related to the antiunitary nature of the time-reversal
transformation. At the level of the S-matrix, this corresponds, as should
be expected, to the replacement of processes by time-reversed processes. At
the level of the generating functional Z, invariance of QED follows from the
fact that the determinant obtained by integration over fermions, namely,
det(iy - (0 —ieA) —m), is also equal to det[—(iy - (O — ied) —m)].

Furry’s theorem

The invariance of QED under charge conjugation leads to the result that
all Feynman diagrams with only an odd number of external photon lines
vanish. This is known as Furry’s theorem. It is easily obtained as follows. We
carry out the change of variables ©» — Cv%x* in the functional integral. We
do not make any change for the electromagnetic potential A,,. From (11.50),
we have S(A4,1,1) = S(A, x, X) = S(—A, x, X) for the fermionic action. The
bosonic part is even in A and so we have indeed

S(A,9,9) = S(=A,x,X) (11.56)

for the whole theory. We then find
Z[J] = /[dAdde)] eiS(A,w,T;)ef JhA,
= /[dAdng] GiS(—AXX) o [ T Au

= /[dAdxd)Z] iS(AXX) o= [ 71 A
= Z[-J] (11.57)

This shows immediately that all diagrams with only an odd number of photon
external lines will vanish. (If there are external fermion lines, the result is
different since there will be changes for the fermion sources.)

CPTtheorem

While QED has the discrete symmetries of C, P and T, the standard
model of particle interactions violates parity invariance and, to a small ex-
tent, T invariance. However, if we have a Lorentz-invariant theory with an
interaction Hamiltonian which is the integral of a local hermitian density and
if the fields are quantized with the proper spin-statistics connection, then, it
can be proved that CPT, the combined operation of all three, is always a
symmetry. This is the celebrated CPT theorem. The product can be taken
in any order.
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11.5 Low-energy theorem for Compton scattering

The WT idenitity for gauge-invariance (11.22) tells us that I'* for QED is
gauge-invariant. By combining this with the discrete symmetries, it is possible
to derive general low-energy theorems for certain scattering processes. Here
we illustrate how this can be done for Compton scattering. We take the
incoming fermion momentum to be p, the outgoing fermion momentum to be
p'; k, k' will denote the incoming and outgoing photon momenta, respectively.
We want to consider the forward scattering amplitude for which p = p’ and
k = k'. For the forward scattering amplitude, the only kinematic invariant is
w=p-k/m, and we want to calculate the scattering amplitude to the linear
order in w.

As we discussed in Chapter 8, I' is the quantum effective action, quantum
effects are already included in it, and so, we can do classical scattering theory
using I as the action to obtain the full quantum S-matrix of the theory. In
other words, the S-matrix can be constructed from I" by considering only the
tree diagrams. Consider an expansion of the I'* in powers of the photon field
A,,. For Compton scattering, with one incoming and one outgoing photon,
we need the terms with one and two powers of A, only. (Higher powers of A
can be eliminated since we should not form photon loops when using I".) We
are also interested in low energy scattering, so we can consider various vertex
functions, as in (11.28), expanded in powers of the momenta or derivatives
of fields. For example, the two-point function for the fermions is of the form

Iy = /15(96) K(z,y)¥(y) (11.58)

The equation K1 = 0 must have as solutions the usual plane wave solutions
of the Dirac equation. This tells us that, in momentum space, K must have
the form K(p) = (y - p — m)h(s) where h(s) is some function which can be
expanded in powers of s = (p?—m?)/m? and h(0) = 1 to ensure that the fields
are normalized properly. (If we consider g as a function of p? rather than s,
then we need h(p? = m?) = 1. One can rearrange the series to write it in terms
of s.) In the interacting theory, WT identities connect this two-point function
to the photon vertices. In coordinate-space, momenta are derivatives and
terms with derivatives are not gauge invariant. The photon vertices are such
that they combine with the two-point function appropriately to ensure gauge-
invariance. Since we know that derivatives must become covariant derivatives,
0 — D = 0 —ieA, for reasons of gauge invariance, it is easy to write down
the general form of the function. We need

Iy = %/w [h(S) (i - D —m) + (iv - D — m) h(S)] 1 (11.59)

Here m2S = —D? — m?2. Notice that S does not commute with v - D, so the
ordering of h and «-D is important. The symmetric ordering is consistent with
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C-invariance and the fact that we have free photons in Compton scattering.
Notice that the relevant commutator is

Blir - D, =D = —2e$7" o, Dy — ey (D, Fy) (11.60)

The second term is irrelevant for Compton scattering which does not need
photon propagators and so the photon field can be taken to obey the equation
of motion. The first term is ruled out by C-invariance. This justifies the
symmetric ordering in (11.59).

In addition to the two-point function given above, we can have terms like

rr :/1é—em1/;[’YH77u]f(S)¢FW+aFwFWJ’¢+”' (11.61)

The term with the two F’s is also nonlocal in general. In terms of photon
momenta k, it is already of order k2, so higher derivatives are irrelevant at
low energies; even this term can be neglected to the order we are calculating.
Similarly, for the first term in (11.61) we only need f(0), the higher terms
will be negligible for k small compared to the mass of the fermion. f(0) is
related to the anomalous magnetic moment of the particle and, in fact, by
comparing this term with the nonrelativistic limit of the Dirac theory, we can
identify f(0) =g — 2.

For low-energy Compton scattering, we only need h(S) ~ 1+ hy S =
1+hi(m2?s—eA-p—ep- A+e?A%)/m?. The relevant terms are then obtained
as

rr=r©® L p 4 pa) 4 pa” 4 p@
IO =iy -0 = m)h(s)y

-1
IO = e [y Ah(s) + his)y - A

P00 = (g = D01 1
ra’ = S—Z;zz (iy-0—m)(A-P+ P A)
+(A-P+P-A)(iy-0—m)|¢
re = ezhgld_) [(iv -0 —m)A® + A% (i - 0 —m)] ¥
2m
—ij;qﬁ[y-A(A-P—i—P-A)+(A-P+P-A)7-A]¢

(11.62)

In this expression P = i, and we have already dropped the F?-term from
(11.61) for reasons cited.

Consider the term I'® with two A’s first. Here ) and 1 will be replaced
by free-particle wave functions which obey the equations of motion. So the
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first term in I"® does not contribute to Compton scattering. The second
term will involve (2p + k) - e or (2p+ k) - €’. It is possible to choose a gauge
where p- e = 0 and at low energies we get p- e’ = 0. (This is evident if we
go to the rest frame of the initial fermion.) All of I'® is not relevant to the
order in photon momentum that we are calculating. For similar reasons, the
term ') (with (A- P+ P-A)) can be seen to be negligible. The only terms
which are important to the order we are interested in are I'©), ') and
) In computing the amplitude using these terms, we encounter h(s) for
s = ((p+k)?—m?)/m? = 2p-k/m? = 2w/m and for s = ((p—k)?>—m?)/m? =
—2w/m.

The probability amplitude due to I"!), taken to second order, is given by

W _ 2 » w 2 7 )
M eupb ‘ (1+h1m) (- o+ k) — m)(L+ 2haw/m) |

1

w 2
+ ~e(1—h—) e |u
! m) o=k —m)(I = 2mw/m) |
1

%—i822p—.kﬁp[~y-e/fy-kfy-e+fy-efy-k"y-e/]up

o2
~—i—e-¢€ (11.63)

m

where we have used the fact that, because we chose p-e =0,
(v-p+m)vy-eup=—y-e(y-p+mu,=0 (11.64)

and the similar result for ¢’.
The amplitude which involves the product of I'™) and I'*") is zero to this
order. The contribution due to I""") taken to second order gives

e’(g —2)?

1) —
M 64m?

_ v i a
Up [Fyua’}/ ]k#ei/ )_mh/ a’yﬁ]kaeﬁ

v-(p+k

+[7“,v”]ku€v;[va,vﬁ]kaeb up
y-(p—k)—m

(11.65)

By rationalizing the propagator and rearranging the terms in the numerator
and using (7 - k)? = 0, we can simplify this to
ie?

M) = oz (0 = 2@ 10 up kel (11.66)

We have also dropped some more terms which are negligible for small k. Since
v - pup = mu, we may write



11.5 Low-energy theorem for Compton scattering 235

— 174 « 1 — 174 « v (07
ap Y [y, v Jup = 2, Up [y - "1y A vy - plup (11.67)

Simplifying the y-matrix algebra, we find

_ ot 2p* 2p”
UV o _ Yov oo LAV JTpe" 11.68
up [,y = U | [T =Y = ey ey (11.68)
Substituting this in (11.66), we get
(1) e’ 2 - /
MY = W(g —2)° w Upotup(e xe); (11.69)

The forward scattering amplitude can be parametrized in general as
M =ity [fi(w) e e +iwfo(w) (€' x €); o] up (11.70)

where fi(w) and fa(w) are the (photon) helicity-preserving and helicity-
flipping amplitudes. Combining our results (11.63) and (11.69), we get the
total scattering amplitude in the forward direction at low energies as

2 2 .
M = iu, —%e e — iw#(g —2)2(e! x €)io| up (11.71)
In other words,
2
e
0)=-<
f1(0) -
£20) = — 5 (g — 2)° (1L.72)
2= T2 '

The low-energy forward Compton scattering is entirely determined by the
charge and magnetic moment of the fermion on which the photon scatters.
This result is very general. We have not made any assumptions of perturba-
tion theory, nor have we assumed that there are only electromagnetic inter-
actions. We have only used the invariance properties of QED coupled with a
low-energy expansion. This result can hold for even composite particles like
the proton.

Direct verification of (11.72) for the proton, for example, is difficult; usu-
ally it is converted to a sum rule on cross sections for scattering of polarized
photons on the target fermion by using dispersion relations. This sum rule is
known as the Drell-Hearn sum rule. It is in good agreement with experimental
data.
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12 Spontaneous symmetry breaking

12.1 Spontaneous breaking of a continuous global
symmetry

In this chapter we give a more detailed description of spontaneous symmetry
breaking or the Goldstone realization of symmetry, focusing on continuous
global symmetries at first. The characterization of the ground state or vacuum
state by Q4|0) # 0, for a spontaneously broken symmetry generated by Q4,
is not very convenient for calculational purposes. Therefore we shall rewrite
this in somewhat different ways. Let A, be a set of operators which transform
nontrivially under the continuous symmetry Lie group G. For an infinitesimal
transformation, we have §A4, = (tﬁﬁOA) Ap for some group parameters 64
and téﬁ are the generators of the Lie algebra of GG in the matrix representation
to which A, belong. Since Q“ generate group transformations in the quantum
theory, this means that we can write

i0Aq = [Aa, Q- 0]
= i(tas0") Ag (12.1)

The finite version of this relation is
QY A, e =D, 5(0) Ag (12.2)

where D,s(0) is the matrix representing the transformation corresponding
to the parameters 04 in the representation to which A, belong. Taking the
vacuum (ground state) expectation value of this equation, we obtain

(0" Ay e7'2?10) = Dap(6) (0]A5]0) (12.3)

From this equation we see that, if Q“|0) = 0, (0]A4|0) = Das(0) (0|A5|0).
Since Dyg(f) is not the identity matrix for all 6, because A, is taken to
transform nontrivially, this means that (0]A,|0) must be zero, giving us the

statement
Q40) =0 = (0]A44]0) =0 (12.4)

for all A, which are not invariant under G. The contrapositive of this state-
ment is that if an operator which is not invariant under G develops a nonzero
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vacuum (ground state) expectation value , then the symmetry G is sponta-
neously broken. This gives us a way of implementing spontaneous symmetry
breaking by assigning vacuum expectation values to operators which are not
invariant under G. Of course, we cannot assign expectation values arbitrar-
ily. The ground state is obtained by minimizing the Hamiltonian. So what we
mean is that, in a theory with spontaneous symmetry breaking, the Hamil-
tonian is such that its minimization leads to nonzero expectation values for
certain operators which transform nontrivially under G.

Semiclassical construction of the ground state

The construction of a ground state with the property of spontaneous
symmetry breaking can be explicitly carried out if a semiclassical approach is
valid for the theory under consideration. We illustrate this by considering the
example of spontaneous breaking of a U(1)-symmetry. Consider the theory
of a complex scalar field ¢ with the action

S = /d4:17 [0,0%0"p —a ©* o —b ((p*gp)ﬂ (12.5)

This has an obvious U (1) symmetry, the transformations on the field being
¢ — ¢’ = €. The Hamiltonian corresponding to (12.5) is given by

H = /d3x [Bo* o + V' Vo +a o o +b (0" ¢)?] (12.6)

Classically it is easy to choose the ground state. We must minimize the Hamil-
tonian. The field configuration (p, dpp) which minimizes H is the ground
state configuration. This configuration will depend on the values of the pa-
rameters a, b. If b is negative, H is minimized by taking dyp = 0, ¢ — o0, in
which case H — —oo. There is no ground state; this is an unphysical case.
We must therefore require that b > 0. Then there are two cases of interest.
1) a > 0. In this case every term in H is positive and H is minimized by the
configuration dppp = 0, ¢ = 0.

2) a < 0. In this case, we rewrite the Hamiltonian as

2
H= /d% [(f%go*(%cp—i— V*Vo+b (" p — ’U2)2} - /d3x % (12.7)
where v? = |a|/2b. The configuration which minimizes H is evidently given
by

dop = 0, V=0
erp=1v> or ¢=uve" (12.8)
(o is independent of x since d,¢p = 0.)
The classical values can be realized as expectation values in the quan-
tum theory. Denoting the operator corresponding to ¢ as ¢, notice that the
expectation value of a product like ¢*¢ is given by
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(0]¢"#|0) = (0[¢*]0) (0[¢]0) + O(R) (12.9)

Thus, at least semiclassically, we can specify the properties of the ground
state by writing (0|¢|0) = v where v is obtained by minimizing the classical
Hamiltonian. The two possibilities are thus

1.a>0 (0]¢|0) = 0 |
2. a<0 (0]6|0) = +/Jal/2b e + O(h).

Since ¢ — ¢’ = €?¢ under the U(1) transformation, the second case where
¢ has an expectation value in the ground state corresponds to spontaneous
breaking of U(1) symmetry.

One can construct the wave function of the ground state (vacuum state)
explicitly as follows. Consider the first case where (0|¢|0) = 0. We first write
& = (¢1 +id2)/\/2, where ¢1, ¢ are real fields. We then introduce the mode
expansions

pi(z) = Z%kuk(w) (12.10)
k

for i = 1,2 and where uy(x) is a complete set of real functions for & within a
box of volume V = L3. We can take uy () to be eigenfunctions of —V? with
eigenvalues k2. Explicitly, if we impose the boundary condition ¢ = 0 on 9V,
we may take

3
2\2 . mimx1 . NoTIo . N3TI3
up(x) =

I 7 sin—p—sin— (12.11)

with
/d3x uk(w)ul(m) = 5kl (1212)

In a similar way we can write

Oopi = Zpikuk(ic) (12.13)
%

The canonical commutation rules give
[Gik» Dj1] = 10ij Oma (12.14)

and the Hamiltonian can be written as

1
H= 5;(19?:@ + Wi @) + Hine (12.15)

w,% = k2 + a. If we ignore the interaction Hamiltonian Hy,; with the idea of
including it perturbatively, then the Hamiltonian is that of the harmonic os-
cillator form and the ground state wave function can be immediately written
down. It is given by
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1 1
0= (o) = N Texp (~gend ) = e | g Sna | (1210

(N is a normalization factor.) In this case, evidently,

(0[¢:10) = > (0lqik|0) ur(z) =0 (12.17)

k

The semiclassical construction of the vacuum wave function can be done
along similar lines for the case of spontaneous symmetry breaking. In order
to achieve (0|¢|0) = v e'®, we write

¢ = el [’U + %(7]1 + ’L"I]z) (12.18)

and treat 71, 72 as ordinary quantum fields with (0|n;|0) = 0. Substituting
this into the action (12.5), we find

S= [ 5 [Om)* + @ne)? — 2alt] ~VIalb m-+1)~ (o +12)? (12.19)
up to the additive constant |a|?/4b. The term linear in 7 is zero since v was
chosen to be the classical minimum of the action, v?|a|/2b. Treating the cubic
and higher terms perturbatively, we can construct the vacuum state in terms
of m and 72. 11 is a massive field, of mass /2|al. 72 is massless and it is
referred to as the Goldstone boson. The appearance of a massless field is a
very general feature of spontaneous breaking of continuous symmetries known
as Goldstone’s theorem. Introducing a mode expansion

m(z) = Zﬁlkuk(ic)
k
() =Y nokun(a) (12.20)

k

the ground state wave function can be obtained as

1 1
Yy = N exp (—5 Z Qn?y, — B Zwkn§k> (12.21)
3 k

where 2, = \/k - k + 2|a|, wi, = Vk - k. With this wave function, it is clear
that
(0]9|0) = v €™ (12.22)

since (0|n1|0) = 0, (0|n=2|0) = 0, at least in the approximation of neglecting
the interactions. (The interactions do involve the Goldstone mode and may
vitiate this result in some cases.) From the point of view of separating out
the Goldstone mode, a better parametrization for ¢ is
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p(w)) <./\($) , >

=|(v+——=] exp|i—= + i 12.23
o= (v+22) e (2] (12.23
where p(x) and A\(x) are the dynamical fields. Substituting this into the action
(12.5) we get

S = /% l(apﬁ 4 (1 + ﬁi)? (O)? — 2|a|p®

= [ 5 (@9 + (0N  21al?] + O(?*) + ~+constant (12.24)

b
— V2 ub P> — 1 p* + constant

p is a massive field, of mass /2|a| and A is the massless Goldstone boson.
Notice that the potential term does not depend on the Goldstone mode A.
Again, treating the cubic and higher terms perturbatively, we can construct
the vacuum state in terms of p and A as

1 2 1 2
Wy = Nexp <—§ ; pp; — 3 ;wk)\k> (12.25)
where the fields have the mode expansions

p(x) = prun()
k

M) = Apug(a) (12.26)
k

The calculation of the expectation value is now more involved because of
the composite nature of the operator exp (z)\/ v\/§) Introduce a renormalized
operator by

A

O =exp (lv\/i + A) (12.27)
where A is a renormalization constant to be fixed by canceling the possible
ultraviolet divergence. We can evaluate the expectation value using the wave
function (12.25). Since it involves (A(z)A(z)), we can also evaluate it in a
simpler way from the equal-time value of the propagator, since \(x) is a
free field. (There is some difference between these methods, since we used
periodic boundary conditions for the propagator whereas, here, we have fields
vanishing on the boundary. Since there is arbitrariness due tot he cut-off
anyway, this difference is immaterial; the qualitative results are the same.)
With a high momentum cut-off A, we then find

/12
=1 (12.28)
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where we choose the renormalization constant A to be A2/1672v?; this gives
(0|¢|0) = ve'®, as expected from the minimization of the Hamiltonian, per-
turbatively in the interactions of p.

This calculation also shows that there would be exceptions in a theory
in one spatial dimension. In this case the k-integration in the evaluation of
(0]0|0) has infrared divergences as well and gives

(0]0]0) = exp (A - ﬁ log(/l/kmm)> (12.29)

where ki, is a low-momentum or infrared cut-off. v is dimensionless in one
spatial dimension and we have set it to 1 without loss of generality. We can
renormalize O at some scale u, choosing A = 16% log A/p. This leads to

kmin 167
000y = [7}
~ 0 (12.30)

Thus the expectation value (0|¢|0) vanishes as the infrared cut-off goes to
zero. This is an infrared effect and has nothing to do with our renormaliza-
tion prescription. Large-scale (small k) fluctuations of the potential Goldstone
field destabilize the ground-state expectation value. This problem exists for
any massless field; in general, one cannot have spontaneous breaking of con-
tinuous symmetries in one spatial dimension. This result is known as the
Mermin-Wagner-Coleman theorem.

The construction of the ground state is semiclassical in the sense that
we choose the classical ground-state configuration ve'® and build a wave
function that peaks around this value. This will be a good starting point if
one can do an h-expansion of the theory where the higher-order terms are less
significant. In an hi-expansion, we can include corrections to Wy and (0]¢|0).
However, if an hi-expansion is not suitable, there is no general rule for the
construction of the ground-state wave function, even though it can still be
indirectly characterized by the expectation values of various operators.

12.2 Orthogonality of different ground states

The ground state wave function we have constructed gives (0]¢|0) = ve'®.
Different values of «a correspond to different ground states, so for this section,
we will write |a) for the ground state which gives the expectation value ve'.
Classically we see that they all have the same energy and so we have a set
of degenerate classical ground states. What is the value of the phase « that
we should use for the quantum ground state? Does the true ground state
correspond to a specific value of « or is it a superposition of |a) over different
a’s? This is the natural question in using the states |a). We now show the
following results.
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1. (a|0) = 0. More generally (a|a’) = 0 for a # .

2. Physical results are independent of the value of «.
These results show that one can build up the quantum theory by choosing
one value of a; one must make a choice but it does not matter which value
is chosen.

The second statement is easy to see; the substitution of the field ¢ as

in (12.23) led to the action (12.24) which is manifestly independent of c.
Therefore all results obtained from this action will be independent of «. As
for the first statement, notice that a change in « is equivalent to a shift of the
Goldstone field X\. The operator which generates this is dyA. Thus, formally
we may write

la) = exp (—wa\/i/d% ao,\> 0) (12.31)

The expectation value of exp(i\/vy/2) for this state is e’®. We will use a
cut-off on the spatial volume V = L? and define the integral of dy\ as

/d% Ao\ = U By e /L° 80/\} (12.32)
L—oo

The overlap of two states |0) and |«) is given by

(0]er) = (0] exp (—m\/i / 60)\> |0)
= exp (—v2a2/<80)\(x)80)\(y)>) (12.33)

Evaluating the expectation value in the exponent we find

1 3k ,
/<60)‘(‘T)60)‘(y)> = —/ Baddy wy e~k @Y g=a®/L*—y?/L?

2] (2np
T2
) (12.34)
2
so that -
(0]a) = exp (—§a2v2L2) (12.35)

The overlap vanishes as exp(—V%). This applies also for general a, o/ and
further for (0|O|a) for any local operator O. The ground states are thus or-
thogonal in the limit of large volumes and there are no transitions between
them induced by local operators. (Notice that the result is obtained only
for V. — oo which will also correspond to infinite number of degrees of free-
dom; for systems with finite number of degrees of freedom, truly there is no
spontaneous symmetry breaking. In practice, large systems, e.g., macroscopic
crystals, can be approximated by the infinite system.) Notice also that the
vanishing of (0|« for all & # 0 shows that the symmetry cannot be unitarily
implemented in the quantum theory.
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In summary, we have found that the U(1) theory (12.5) can exist in two
phases. For a > 0, one has the symmetric phase where the U(1) symmetry
is manifest, realized in the Wigner mode. For a < 0, the U(1) symmetry is
spontaneously broken and we have the Goldstone realization.

12.3 Goldstone’s theorem

We shall first consider Goldstone’s theorem classically using an O(N)-
symmetric theory as an example. We consider the action

S= /d4:v B@chaa“cpa —Vi(p) (12.36)

The O(N)-transformations are given by d¢, = 04(T4)app, where (T4), are
generators of the symmetry group G = O(N) given as N x N antisymmetric
matrices. The kinetic term is obviously invariant under these. The invariance
of the potential term gives

ov

9o, (T*)apspp = 0 (12.37)

Differentiating this once more, we find

0%V
8<Pa890b

ov
0pq

(TA)aCSDc + (TA)ab =0 (12.38)

We evaluate this at the vacuum expectation value ¢, = v,, which is the
solution of (0V/d¢,) = 0. Equation (12.38) then becomes

< v )W_U(TA)acvc_o (12.39)

59%3%

The mass matrix which appears upon expanding S around the vacuum ex-

pectation value is
0%V
My, = <7> (12.40)
0P 0pyp o

Equation (12.39) can thus be written as
M€l =0 (12.41)

where ¢4 = (T4),.ve.

The generators T can be divided into two classes. The generators which
annihilate v® form the isotropy subgroup of v, (or little group of v.) denoted
by H € Gj these generators of H will be denoted by ¢*. The generators of
G which correspond to the broken symmetries, i.e., those which are not in
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the algebra of H, will be denoted by S*. For the H-generators ¢4 = 0 and
we have no information about their masses from (12.41). For the generators
which correspond to the broken symmetries, &4 = ¢ are in general not
zero. We then see that they are eigenstates of the mass matrix with zero
eigenvalue; the zero eigenvalues of the mass matrix correspond to massless
particles. If all £¢ are linearly independent, we have shown that for every
broken generator there is a massless particle. This is the classical version of
Goldstone’s theorem. The linear independence of the ¢?, which is needed to
complete the proof of the theorem, can be seen as follows. If & are linearly
dependent, then there is a nonzero solution for ¢; with é*¢; = 0. This means
that the quantities S;; = &;u&jq, considered as the elements of a matrix,
correspond to a matrix of zero determinant. Since S;; is symmetric, we can
diagonalize it by an orthogonal transformation R;;. (This is not in O(N)
but is an orthogonal transformation on the directions corresponding to the
generators, in a subgroup of O[N(N — 1)/2].) The diagonal version of S;;
is Sij = GiaCja where (jo = Rj;&jq. The diagonal elements are manifestly
positive and nonzero. If (;, is zero, then we have a larger isotropy subgroup
for the vacuum expectation value v,. Thus &' are linearly independent and
Goldstone’s theorem follows.

Transformations which leave the vacuum invariant form a subgroup H €
G, which is called the invariance group of the vacuum. This is also the little
group or isotropy group of the vacuum expectation value. Equation (12.3)
tells us that (0[e’?? ¢, e7'2?|0) = Dyy(0) (0]¢p|0), so that

e 9000y =10) = Dap(6) (0[¢5]0) = (0]¢al0) (12.42)

The invariance group of the vacuum, H, is called the “unbroken” subgroup of
the symmetry group Gj it is the largest unitarily realized symmetry group of
the theory. If there are several fields with corresponding vacuum expectation
values, H is the largest intersection of the respective little groups.

We now turn to Goldstone’s theorem in the quantum theory. Starting with
a continuous global symmetry of the Lagrangian, by Noether’s theorem, there
is a conserved current J*, i.e.,

B, J" =0 (12.43)

Consider now an operator A(z) which transforms nontrivially under the sym-
metry, or does not commute with the charge Q.

[Q(t), A(0)] = B(0) (12.44)

The strategy of the proof is to consider (0|B|0) which has to be nonzero if
we have spontaneous symmetry breaking. From the conservation law (12.43),
we get

0= / a3z [0,J" (x), A(0)]
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- ?{ dS;[J'(x), A(0)] + %[Q(t),A(O)]
d
= Z[0(). 4(0)] (12.45)

where we used the fact that §dS;J* vanishes at spatial infinity if the fields
vanish sufficiently fast or if we have periodic boundary conditions. We can
thus conclude that

(01B0) = (0] [Q(¢), A0)] 0) (12.46)

is independent of ¢ for any t, i.e., time-independent. Using
JO(x,t) = e P JO(0, 0)e P (12.47)

and inserting a complete set of states, equation (12.45) becomes

(2m)? Z 5(3)(kn{<0|J0(0)|n> (n| A(0)|0)e~ 2t

—(01A(0)[n) (n]J°(0)[0)e*"*| = (0|B0)
(12.48)

where E,,k, are the energy and momentum of the state |n). The right-
hand side of this equation is independent of time because of (12.46), and
it is nonvanishing because we have the premise of spontaneous symmetry
breaking. Since positive and negative frequency contributions cannot cancel
out mutually, this equation can be satisfied only if we have a state |G) with
Eg = 0 contributing on the left hand side. Because of the §(3)(k,) only
states of zero momentum contribute on the left-hand side and so we have the
following result.

For every continuous global symmetry of the Lagrangian which is
spontaneously broken, there exists a state with energy F — 0 as the
momentum k — 0 (Goldstone’s theorem,).

This state corresponds to a massless particle if we have the relativistic relation
between energy and momentum. The theorem is valid even for nonrelativistic
situations such as those that occur frequently in solid state physics. The field
excitation corresponding to this state is called the Goldstone mode. For the
Goldstone state |G), it also follows that we must have

(0[4(0)|G) #0, (017°(0)G) # 0 (12.49)

We may thus consider the current J° or the operator A as generating the
Goldstone state. The field corresponding to the Goldstone particle is a
Lorentz scalar. This follows from the fact that it is created by the current and
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the parameters of internal symmetry transformations are scalars. If a Lorentz
tensor gets a nonzero vacuum expectation value, we would break Lorentz in-
variance; therefore, in a relativistic theory, B and A are Lorentz scalars. The
Goldstone state, created by A, is also a scalar and hence a spin-zero boson.
B and A need not be fundamental scalar fields; they can be composite opera-
tors. For example, for the spontaneous chiral symmetry breaking in quantum
chromodynamics, they are of the form §y°q or gg, where ¢ are the quark
fields.

12.4 Coset manifolds

Consider a compact Lie group G and a subgroup H C G. We define a quotient
or coset G/H as given by all elements g of G with the identification g ~ ¢’ for
allg, ¢’ € Gif g = ¢’ h for some element h € H. In other words, elements of G
differing by an element of H are considered equivalent and correspond to the
same element of G/H. Just as a Lie group G is a differentiable Riemannian
space, so is G/H. The Lie algebra of the generators T# of G can be split
into the subalgebra of generators t* of H and an orthogonal set of generators
S°. By considering infinitesimal elements of G of the form g ~ 1 — iT494 =
1—it%0% —iS0" =~ (1—iS'0%)(1 —it*0%) ~ (1—1iS0%)h, we see that S? define
the coset directions near the identity element; in particular, dim(G/H) =
dimG — dimH.

For many applications we are interested in functions on a coset space.
These can be obtained from functions on G. Consider the set of all functions
on the Lie group G. We denote the matrix representation of an arbitrary
group element g by DE = where R denotes the irreducible representation and
m,n are matrix labels taking values 1,2, -, dimR. The functions DF  are
called the Wigner D-functions. For the angular momentum algebra, these are
of the form DJ  (0) = (j,m|exp(iJ*0)|j,n), where |j,m) are the standard
angular momentum states and J¢ is the angular momentum operator. The
standard completeness theorem for groups says that, for a compact Lie group
G, the functions {DE } form a complete set, where we include all unitary
irreducible representations (which are also finite dimensional). In other words,
we can expand an arbitrary function on the group as

flo)="Y CnuDhulg) (12.50)
Rm,n

Functions on the coset space G/H, by definition, must be invariant under
g — g h, for elements h of the subgroup H. We can obtain a basis for
functions on G/H by restricting to the subset of D’s which obey

Df,.(gh) = DL, (9) (12.51)

This means that the possible choices for the right index n in DE_ must

correspond to states which are singlets of H € G.

n
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On a Lie group there is a natural Riemannian metric known as the Cartan-
Killing metric. With g denoting a general element of G, g~'dg can be ex-
panded as g~ tdg = —iTAE# (p)dp!, where ¢!, I = 1,2,---,dimG, are the
parameters of the group. Ej' are called the frame fields for the space G.
We may also write this as E4 = Efdp! = 2i Tr(T4gdg), where we have
used the normalization Tr(TATP) = 1§45, The Cartan-Killing metric can
be given as

ds® = =2 Tr(g~'dg g~ 'dg)
= FBAEA
= By EY de'dy” (12.52)

(It should be kept in mind that any parametrization of G is only a choice of
local coordinates on Gj; in general one cannot find a single global coordinate
system.)

A set of frame fields for the coset space can be defined by E' =
2i Tr(S'g~'dg); the metric for the coset is then given by

ds®> = E'E"
= Gij(p)dp'dy’ (12.53)

For h € H, we find E*(gh) = hiE7(g) where R} is H-transformation matrix
in the representation to which the S belong, hS*h~! = h;- S57. The metric ds?
for the coset is invariant under this, ds?(gh) = ds?(g), so it can be taken to
be independent of the parameters corresponding to H C G. The remaining
parameters, the ¢’s indicated in (12.53), are local coordinates for G/H.

We now give some examples of coset spaces.

1. SU(2)/U(1)

The space SU(2)/U(1) is the usual two-sphere S?. A general element
of SU(2) can be parametrized as g = a + iblo; where o; are the Pauli
matrices. The condition of unitarity and the conditon of unit determinant
give a? + b’ = 1 with a,b’ real. Thus SU(2) is topologically S3. Define
a U(1) subgroup by the os-direction by a general element h = a + ib'o3
with a® 4+ b2 = 1. We write b’ = /¢, which gives the remaining parameters
as £ obeying £¢* = 1 corresponding to a two-sphere S2. Another way to
parametrize g is

1 1 z eix/2 0

By computing ¢~ 'dg and identifying E?, we get the coset metric as

dz dz

ds® =4———
T T 1 222

(12.55)
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This is the standard metric for the two-sphere; the usual parametrization in
terms of 6, ¢ is obtained by z = tan(0/2)e*?.

2. Other coset spaces

There are many other examples of coset spaces. Two simple sets which
are spheres of various dimensions are SU(N)/SU(N — 1) = S?N-1 and
SO(N)/SO(N — 1) = SN=1. Another interesting example is the complex
projective space CP" !, which is given as SU(n)/U(n — 1). We will not dis-
cuss how the identification of the spaces corresponding to these cosets can be
made; some of it will become clearer later in this chapter.

12.5 Nonlinear sigma models

Consider a set of fields ¢ (2) which take values on some Riemannian manifold
M. In other words, ¢ are coordinates on M. ¢ (z) then provides a mapping
from spacetime to M,

oMz) : R* — M

The space M, into which the mapping is done, is called the target space.
Let Gap(y) denote the Riemannian metric tensor on M. The action

S= /d4x %GAB(QD)aHQDAaM(pB (12.56)

defines a nonlinear sigma model on M. In Chapter 8, we have already dis-
cussed how to set up a functional integral for sigma models.

In our present context we are interested in target manifolds which are
cosets of groups. In this case, using the form (12.53) of the metric, we can
write

S= —2f2/d4$ Tr(S'g'0,g) Tr(S'g 0" g) (12.57)
f is a quantity with the dimensions of mass; it will play the role of the

coupling constant. An important particular case is when we have G itself, or
H = 1. This is called a principal chiral model and the action is

S= —f2/d4a: Tr (g~ ' 0.9 g~ '0"g) (12.58)

12.6 The dynamics of Goldstone bosons

The dynamics of Goldstone bosons is given by a nonlinear sigma model with
G/H as the target space. We will illustrate this first by an O(N) theory. As
noted before, the action is of the form
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S= /d4x Ba%a% —Vi(p) (12.59)

The O(N)-transformations are given by ¢, — ¢!, = Rappp, where Ry, are the
matrix elements of an (N x N)- rotation matrix. The potential V() is taken
to be invariant under these. Further, V() will be taken to have a minimum
at o = (¢q) With (¢4)(pa) # 0. This will be the vacuum expectation value
in the quantum theory. As a particular choice we may take

0
0

(ba) =va= | - (12.60)

where we have represented v, as the components of a column vector. Ro-
tations on the first N — 1 entries which are all zeroes do not change this
vector; so the little group of this vector is O(IN —1). Thus the vacuum expec-
tation value (12.60) will spontaneously break the O(N) symmetry down to
O(N —1). The O(N — 1)-transformations are rotations matrices of the form

b= (6 (1’) (12.61)

where r is an arbitrary (N —1) x (N —1)- rotation matrix. Clearly, hqpvp = vq.

One can take the vacuum value (¢,) to have some other components
nonzero, rather than (¢x) as we have done in (12.60), a different orientation
of (¢) in N-dimensional space, but this is equivalent to an overall O(N)-
rotation of (12.60). The minimum of the potential fixes (@q) (@), so that
any other choice must be an O(N)-rotation of (12.60). For such a choice
(¢') = Ro(¢) for a specific matrix Ry, the little group elements are of the form
RohRy ! where h is given in (12.61). Thus the little group is still isomorphic
to O(N — 1), but its particular form is a similarity transform of the previous
one. As emphasized in our discussion of the U(1) case, we have to make a
choice of orientation for the vacuum value, but physics is independent of the
particular choice.

The fields ¢4, as fluctuations around the vacuum value can be parametrized
as

$a = Rap()0p (12.62)
where
0
0
by = : (12.63)
0



12.6 The dynamics of Goldstone bosons 251

Rgp is a rotation matrix which is spacetime-dependent; it can be thought
of as made up of the components ¢,. Since hopvy = v, (and this is true
even if the O(N — 1) matrix r depends on the spacetime coordinates), we
find that R, and (Rh)qp lead to the same fields in (12.62). Thus only the
parameters corresponding to O(N)/O(N — 1) will appear in the expression
for ¢,. For any z, ¢? = ., is the same for any R; thus the degrees of
freedom contained in R correspond to the field degrees of freedom where
¢? is fixed. Since there are N ¢’s, this means that we have the degrees of
freedom corresponding to an (N — 1)-dimensional sphere SV ~1 which shows
that O(N)/O(N — 1) = SN-1

We now substitute the parametrization (12.62) in the action and obtain
1
S = /d4 [ op)? —=V(v+p) — 517T(R‘18HR R7'O"R)o|  (12.64)

The potential energy V depends only on p and generally gives a mass term
for this field. The term involving the field R gives the kinetic term for the
(N — 1) Goldstone bosons; they are massless as expected. There is also an
interaction term between the Goldstone particles and p since we have v in
the term involving R. At energies which are low compared to the mass of
the p-particle, only the Goldstone particles can be excited and the action
describing their dynamics is

S = _% /d4:v v (R7'9,R R™'0"R)v (12.65)

Expanding R710, R as —iTAE50,,p? we are led to the expression v7 TAT Bv.
T4y = 0 for all generators in the little group O(N — 1), so only the generators
in the orthogonal complement can contribute. These are matrices of the form
(TYap = (SYap = %(51'(15171\/ — 8ip0an), so that vTS1STy = %5”. The action
(12.65) can be written as

S = %fQ/d‘lx E;E};(’?Hcp“(?“gob
= %fz/d“w Gab(p)0u " 0M " (12.66)

where f = v/2. The dynamics of the Goldstone bosons is thus described by
a nonlinear sigma model with the target space G/H.

The action (12.65) obviously has the full global G-symmetry, where R —
M R and where M is a constant O(N)-rotation matrix. This is to be expected
since the breaking is only spontaneous, i.e., by choice of vacuum state. If we
make an infinitesimal variation R — (1 — iT404(z))R, the variation of the
action is

6S = /d4x i oI (RT'T49,R)v 964 (12.67)
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(We have used the antisymmetry of T4.) This shows that the action has
the invariance for global G-symmetry when the parameters #4 are constant.
Further it identifies the current associated with this symmetry as

J =i v (RTITY0,R)v (12.68)
Also we see that the equation of motion for the fields in R is just the conser-
vation of this current.

Our discussion so far has been classical. In quantum theory, even at low
energies for the external particles in a scattering process, we cannot neglect
the massive particles; they can contribute as internal lines in loop diagrams.
Secondly, there are interactions among the Goldstone bosons contained in the
action (12.66) because there are many nonlinear terms in general. Thus there
are loop contributions due to the Goldstone bosons as well. There are many
types of corrections to the quantum action from the loop diagrams. First of
all, there will be many corrections to the terms involving the p-field. Such
terms in the effective action I" will not be important for low-energy processes
which do not involve p. Secondly, the addition of loop corrections will replace
the parameters of the action (in particular the potential V' and hence the
vacuum value) by renormalized parameters. Following through the simpli-
fications above, we see that the effect is to replace f by some renormalized
value. Finally there will also be many terms involving higher-order derivatives
of the Goldstone fields. To quartic order in the derivatives, we can have, for
example, terms like (vl R719, RR™*0* Rv)?, (vI[R710,R, R~'9, R]v)?. Such
terms do occur and must be included in I, but their contribution to scatter-
ing processes at low energies is small compared to the leading quadratic term,
since the derivatives become momenta of the particles involved. Thus at low
energies, they can be neglected too. (f is the scale parameter in the action, so
this means that we are looking at k/f < 1 for typical momenta k.) Summa-
rizing, we can conclude that the low-energy effective action for the Goldstone
bosons for spontaneous breaking of a continuous symmetry G down to H
is given by the G/H-sigma model. The parameter f is, in principle, calcu-
lable from the full theory, but one can discuss the dynamics of Goldstone
bosons using the sigma model, taking the value of the one parameter f from
experiment.

Even though we have used a Lagrangian model with scalar fields, the re-
sult regarding the dynamics of Goldstone bosons is quite general. Thus we
may have a fermionic theory with symmetry breaking via a composite oper-
ator developing a vacuum expectation value, for example, (0|Gq|0) # 0. The
Goldstone bosons themselves are then bound states of the fermions. Never-
theless, the low-energy effective action for the Goldstone particles is given by
a G/ H-sigma model. This follows from the fact that the Goldstone particles
are created by the current, namely, (0|J°(0)|G) # 0. The only expression for
(0]J,(2)|G) consistent with this, as well as Lorentz invariance and current
conservation, is
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<O|J;(x)|G, k) = (constant) k,, (12.69)

(This is consistent with conservation since k? = 0.) This equation tells us
that the components of the current corresponding to the broken generators
produce ¢’s from the vacuum, irrespective of whether they are bound states
or not. For the current itself, we must, therefore, have a relation of the form

Ji, = 200" + O(¢%) (12.70)

for some constant f, and ¢ represents the Goldstone field. The action which
gives a current of this form is

S = %f2/d4:v D "' + O(p%) (12.71)

The symmetry transformation for the broken symmetries is of the form ? —
@' +6%, for small #°. Since we only have spontaneous breaking of the symmetry,
i.e., symmetry breaking only in the choice of the vacuum state, this action
must have the full G-symmetry. The terms which are higher order in ¢’s can
be thus fixed by G-invariance. This leads immediately to the sigma model.
In other words, our result for the low energy dynamics of Goldstone bosons
is quite general.

Finally, we note that, if we parametrize R as R = exp(—iT%¢?) =1 —
iTAp4 + O(¢?), we can simplify the expression for the current (12.68) of the
sigma model as

Ji = 200" + O(9%) (12.72)

This is for the generators corresponding to the broken ones. This result is in
agreement with the general formula (12.70). For the O(N — 1) directions, we
do not get a term linear in the fields since the unbroken generators ¢t vanish
acting on the vacuum expectation value v. The corresponding currents are of
the form

T8 = [ G000 + O(4°) (12.73)

where [t%, S%] = if*¥ S7 define the structure constants f%.

12.7 Summary of results on spontaneous symmetry
breaking

1. G is the symmetry group of the Lagrangian. It is also the symmetry group
of the Hamiltonian.

2. G|0) # |0) , H|0) = |0) implies that G is spontaneously broken down to
HCAG.

3. This can be realized if minimization of energy levels leads to nonzero
vacuum expectation values (0|A|0) # 0 where A transforms nontrivially
under G and the isotropy group of the vacuum expectation value is H.
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4. Transitions among different degenerate vacua do not occur in the limit
of infinite number of degrees of freedom, (a|a) — 0.

5. For every broken generator of a continuous global symmetry of the La-
grangian, there exists a massless spin-zero particle (the Goldstone boson).

6. The low-energy dynamics of the Goldstone bosons, including their mutual
interactions, is given by a nonlinear sigma model with target space G/H.

7. The current for the broken symmetries has the form J;, = f29,¢'+0(¢?),
where ¢* are the Goldstone fields and f is a constant.

12.8 Spin waves

The simplest example of spontaneous breaking of continuous symmetry is
the ferromagnet. This is a spin system where we have a spin variable at each
lattice site of a three-dimensional lattice. Neglecting other degrees of freedom,
a good approximation for the Hamiltonian of the system is the Heisenberg
Hamiltonian

H=-Y J;S:-8, (12.74)

ij

where 1, j refer to lattice sites and S; denotes the spin vector at site i. J;;
is the so-called exchange integral, and this falls off for large separations of
the sites; very often it is a good approximation to keep only the nearest-
neighbor interaction in (12.74). (We use the letter H for the Hamiltonian
and for the unbroken subgroup since this is conventional; it should be clear
from the context what is meant.) The Hamiltonian (12.74) has symmetry
under rotations, so we have an O(3) symmetric theory. The ground state is
ferromagnetic with neighboring spins aligned along the same direction with
a net overall magnetization if J; ;41 is positive and antiferromagnetic with
neighboring spins having opposite orientation if J; ;41 is negative. Either
way, the ground state breaks the O(3) symmetry. For a ferromagnet, with
the spins aligned, the ground state has net magnetization. There is a residual
symmetry for rotations around the axis of net magnetization. Therefore the
O(3) symmetry is broken down to O(2). In the limit of large lattices and for
long-wavelength excitations, we can approximate this by a continuum field
theory. The symmetry breaking O(3) — O(2) will give two Goldstone modes.
These modes are the spin waves. Since O(3)/0(2) is S?, the dynamics of
these modes is given by a sigma model with S? as the target space. There is
no Lorentz-invariance here, so it does not make sense to write a relativistic
effective Lagrangian. However, we can say that the effective Hamiltonian is
of the form of a sigma model, i.e.,

i A

The field Z describes the spin waves. By expanding this powers of the field
Z, 7, this Hamiltonian can describe the interactions among spin waves.
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12.9 Chiral symmetry breaking in QCD

Quantum chromodynamics is the theory of strong interactions, the theory of
quarks and gluons. It is an SU(3) gauge theory, with the gluons being the
gauge particles and the matter fields being the quarks transforming in the
fundamental representation of SU(3). The degrees of freedom associated with
this SU(3) symmetry are called the color degrees of freedom. Thus each quark
field has a color index which takes values 1,2, 3, the different components
transforming into each other under SU(3) gauge transformations. There are
six species of quarks known, denoted by u, d, s, ¢, b, and t, called the up,
down, strange, charm, bottom, and top, respectively. We will denote these
by Q%, a =1,2,---,6, respectively. i is the color index taking values 1,2, 3.
The up and down quarks have masses of the order of a few MeV, the strange
quark has a mass around 150 MeV; these are the light quarks. Masses for
charm, bottom, and top are, approximately, 1.2 GeV, 4.2 GeV, and 174 GeV/,
respectively; these are the heavy quarks. The quarks get masses from the
spontaneous breakdown of the gauge symmetry of electroweak interactions;
the scale for this is approximately 246 GeV. Thus for the dynamics of quarks
at energies well below this scale, we can take a Lagrangian where the masses
are included in by hand. The QCD Lagrangian then has the form

1 a apy YR J
L= —FLF™ + > Qi(iv - Dij — madi;)Q, (12.76)

where the covariant derivative is given by

(Du)ij = (Op + Ap)ig
= 8#5”' — ZIGSA;?(TA)U (1277)
Here Aﬁ‘, A=1,2,---,8 are the gauge potentials for the SU(3) gauge sym-
metry. T4 are hermitian, traceless (3 x 3)-matrices which form the generators
of SU(3) in the fundamental representation. e, is the strong interaction cou-

pling constant.
Consider the quark Lagrangian without the masses, namely,

L= ZQQ iy Dij Q)
= Qia v Dy QLo+ Y Qe iv- Dij Qh, (12.78)
where in the second step we have split the quark fields into the left and right
chiral components Qr, = 1(1++°)Q and Qr = 3(1 —~°)Q. This Lagrangian
has a global UL(6) x Ur(6) symmetry given by
Qia - Qlfa = OfﬁQiLB
Qo — Qo = VapQhg (12.79)
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where U, V are unitary (6 x 6)-matrices. This is the chiral symmetry of
strong interactions. The mass terms do not have this symmetry; so it would
seem that this symmetry is not very useful. However, for the light quarks,
this chiral symmetry is very useful as an approximate symmetry, since the
explicit breaking of chiral symmetry due to the masses is small compared to
the relevant scale of the gluon interactions. So we write QCD for the three
species (or flavors as they are called) of quarks by restricting a, ( to the
values 1,2, 3 corresponding to the up, down and strange quarks. Taking the
«, [ indices as understood, the quark part of the Lagrangian is

L=Qriv-DQr+ Qriv-DQr — (QLMQr + QrMQL) (12.80)

where MY is the quark mass matrix

my, O 0
M = 0 mg O (12.81)
0 0 mg

The symmetries of this Lagrangian are as follows.
1. The color gauge symmetry corresponding to

Ql, — Qi =gi(x) Q)
Ay — A, =g(x) Ay g ' (@) = Oug g7

(12.82)

where g(x) is an SU(3) matrix. This symmetry is not broken but leads to
confinement of quarks and gluons. The spectrum of the theory has only
bound states of quarks and gluons which are singlets of this symmetry.

2. Discrete symmetries like parity, charge conjugation, and time-reversal
are respected by this theory. Quantum effects related to the topology
of the gauge field configuration space and instantons lead to a possible
PT-violating term, the so-called #-term. This is discussed in Chapter 16.
Experimentally, # < 107°. The theoretical reason for the smallness of
this value is not currently clear; nevertheless, based on experiment, the
PT-violation due to this effect can be taken to be zero.

3. There is the U(3)r x U(3)g chiral symmetry given as in (12.79). At the
algebraic level of infinitesimal generators, U(N) ~ SU(N) x U(1); so
we will discuss the U(1)’s separately. We have SUL(3) x SUg(3) sym-
metry. The SUy (3) subgroup of this symmetry group is defined by the
transformations

QLo = UapQrLs
Q;%a = UaﬁQRﬁ (12.83)

In other words, SUy (3) corresponds to U = V subset of (12.79).
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4. The U(1) transformations are given by

UQ)r : Q= e"’Qr, Qr=Qr
UDr Qr = Qr, Qr =€“"Qr
(12.84)
We can form combinations Uy (1), Ua(1) defined by
Uy (1) : QL = e*Qr, Qr=e""*Qn
Ua(l) : QL =€e™Qu, Qr=¢ "Qr
(12.85)

Uy (1) is even under parity and its conserved current is a vector. It can
be identified as the baryon number. U4 (1) is odd under parity and its
current is an axial vector.

The chiral symmetries are broken in many ways.

1. The U(3)r, x U(3)r chiral symmetry is spontaneously broken down to
UB)v ~ SUy(3) x Uy (1) by the effects of the gluonic interactions (the
gauge field Af). The energy scale at which this happens is approximately
140 MeV. The effective Lagrangian for the Goldstone bosons due to this
symmetry breaking is valid up to approximately 1 GeV since there are
some additional numerical factors in the scattering amplitudes. It is a
theorem, due to Vafa and Witten, that vector-like symmetries cannot be
spontaneously broken in a theory with vector-like coupling between gauge
particles and the fermions. So SUy (3) x Uy (1) is the smallest group to
which the chiral symmetry can be spontaneously broken.

2. The mass terms break the chiral symmetry explicitly. If M, = mo1, i.e.,
all the quarks have the same mass, then SUy (3) x Uy (1) is the unbro-
ken subgroup. If the quark masses are different, then SUy (3) is further
broken. This breaking due to masses is explicit and ultimately comes
from the electroweak interactions since the quark masses are generated
by coupling of quarks to the electroweak Higgs field.

3. There is further explicit breaking due to electroweak interactions coming
from the coupling of electroweak gauge bosons and the quarks. Among
other effects, this leads to the mass difference between the 7+ and 7°
mesons.

4. The axial U4 (1) symmetry is explicitly broken down to the cyclic group
Zs (Zon, for Ny species or flavors of light quarks) by anomalies which
are due to quantum corrections.

The baryon number symmetry Uy (1) is not spontaneously or explicitly
broken by the strong interactions; it is actually broken by anomalies in the
electroweak sector and B — L, baryon number minus lepton number, is the
only global symmetry which is obtained in the standard model of particle
interactions.
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The hierarchy of these breakings is also important. The strongest break-
ing occurs for the spontaneous chiral symmetry breaking and the anomalous
breaking of U4 (1). The energy scales for these are comparable and of the or-
der of 1 GeV'. The explicit breaking of chiral symmetry due to masses is next
in order, followed by the breaking of SUy (3) due to mass differences. Elec-
troweak interactions come next and the weakest breaking is that of baryon
number Uy (1) due to electroweak anomalies.

The broken generators for the first breaking SUL(3) x SURr(3) — SUv(3)
are axial in nature and this leads to eight Goldstone bosons which are pseu-
doscalar. These correspond to the 7%, 70, K+ K° K° and n mesons. Be-
cause of the explicit chiral symmetry breaking due to masses, we are start-
ing from an imperfect symmetry, and as a result, these mesons are not true
Goldstone bosons; they are actually massive and are called pseudo-Goldstone
bosons. Their masses should go to zero as the electroweak couplings and the
quark masses are taken to zero. Further, since the explicit breaking scale is
smaller than the spontaneous breaking scale, it is still useful to think of them
as Goldstone bosons, with masses added to the effective action. The masses
are indeed significantly smaller than the scale of the spontaneous breaking
of approximately 1 GeV, so this is consistent. There are also mass splittings
among the Goldstone bosons because SUy (3) is not a perfect symmetry ei-
ther.

SUy (3) with breaking effects due to mass differences is an approximate
symmetry of the theory, realized in the Wigner mode, and the states (mesons
and baryons) can be classified by this. The hierarchy of breakings also tells us
why it is not useful to include the heavy quarks in this analysis. Their masses,
which are higher than the 1 GeV scale of spontaneous breaking, explicitly
break the chiral symmetry so badly that it is not useful to think of a chiral
symmetry for them, even as a first approximation.

12.10 The effective action for chiral symmetry breaking
in QCD

We can now construct an effective action for the pseudoscalar mesons and for
the baryons. The dynamics of the mesons should be governed by a nonlinear
sigma model with G/H as the target space, where G = SUL(3) x SUg(3)
and H = SUy(3). We can represent an element of SUL(3) x SUg(3) by
G = (G, GRr) and the vector subgroup corresponding to the transformations
(12.83) by h = (g,9), where Gr, Gr, g are (3 x 3)-matrices which are
elements of SU(3). Since ¢ is arbitrary, we can write g = GTRV for some
unitary matrix V' of unit determinant. We then regard V as the variable in
h = (GLV, GLV), so that by considering all V € SU(3) we get SUy(3). In
the coset, we identify the elements G and G h.

G h=(GLGLV, V)= (GLGL, 1)(V, V) (12.86)
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This shows that the coset can be represented by the SU(3)-matrix U =
GLGTR. In other words,

SUL(?)) X SUR(?))
SUv(3)

~ SU(3) (12.87)

The Goldstone particles, the mesons in this case, can be represented by an
SU(3) element U. An element (g1, gr) of the chiral symmetry group SU(3) x
SUR(3) acts on G, and Gg by translating them to new elements of the group
as (9rGr,grGRr). Their action on U is thus of the form

U—U' =g Ugh (12.88)

Choosing U = 1 to represent the vacuum, namely (0|U|0) = 1, shows that the
isotropy group is gr, = ggr, which is the vector subgroup of transformations.
(We can choose U to be any constant matrix in the vacuum, the orientation of
the vector subgroup in G is slightly different compared to (0|U]0) = 1, that is
all.) Following our general discussion, the effective action for the pseudoscalar
mesons is given by

2
S = % /d% Tr(9,UT0"U) (12.89)

We can parametrize U as

M —1
U= (1 +i— ) (1 — z—) (12.90)
V2 fr V2 fr
where M is a hermitian traceless matrix. The effective action becomes
M2\ ! M2\ !
S=[d ﬁ 1 oM 1+ — oMM
J ( +2f,,) g ( +2f,,) ]

= /d4x BTr((? MO* M) — ?Tr(M28 MOo" M) + ]

(12.91)

The identification of the physical meson fields is given by M = t%¢®/\/2,
where ¢ are the meson fields and t* for a basis for the SU(3) algebra; they
are traceless hermitian matrices normalized as Tr(tt’) = £5°°. Written out
as a matrix,

L0 Ly at K+t
M= ™ ATt K (12.92)
K- RO ~\/2n

where we have used the particle names for the fields representing them. (Ac-
tually the n in this equation is not quite the physical 1 because of mixing
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with the SU(3) singlet pseudoscalar meson; we will not discuss these details
here.) The eight fields here form the octet representation of SUy (3).

The quartic terms in (12.91) can describe the scattering of the mesons.
The mesons interact with the baryons as well. This can be included as fol-
lows. The baryons also transform as representations of SUy (3); they are
made of three quarks each. In terms of SUy (3) indices, they are of the form
QZQJBQﬁezjk. This is antisymmetric in the color indices; so we can have the
fully symmetric representation for the flavor indices «, 3,7, which is also
symmetric in spin, in accordance with the exclusion principle. This gives a
(ten-dimensional) decuplet of spin—% baryons. Another possibility is to anti-
symmetrize a pair of flavor indices and corresponding spin indices, giving an
octet of spin—% baryons. The lowest mass baryons are the octet; they are of
Zm,( iﬁr 55
the antisymmetrization gives spin—%. The particle identification is given in
terms of B} = 1 B,g,e*?,

the form B.g, = — %ngs)eijkv where n,r, s are spin indices;

1 y0 . 1 +
\/52—1-\/5/1 X D

B = 2 -~ HA (12.93)

(e}
== =0 _./2

with a similar structure for the antibaryons. The baryon kinetic energy term
should be B§iy - dB).

As for the meson-baryon coupling and baryon mass term, they have to be
determined so that the Lagrangian has the full chiral symmetry and symme-
try breaking should be apparent only when we expand U around the vacuum
value 1, consistent with the fact that the chiral symmetry is broken only spon-
taneously. The left-chirality spinor is a two-component spinor x,, r = 1, 2,
which transforms by the (2 x 2)-matrix representation of Lorentz transfor-
mations. Since this matrix has unit determinant, we can form invariants by
contracting the spinor indices with €"®. Thus a left-chirality baryon can oper-
ator can be of the form Q;Q Q@ with two Q1’s forming a Lorentz-invariant
combination or QQrQr with the two Qg’s forming an invariant. To illus-
trate how we can form interaction terms, we will use one combination, say,
QrQrQr, in what follows. Since €n8y9aa’ 983" = ea'ﬁ/V'gLW’ for the baryon
matrix, the transformation rules are of the form

By — g1Bgl. Br — grBg} (12.94)

It is easily checked that the baryon mass term Tr(BpBg + BrBy) is not
chirally invariant. By use of the transformation property of U, an invariant
term can be constructed, leading to the effective baryon action

SBZ/d4$

Tr(B iv-0 B) + gfx Tt (BLUBRU' + BRU'BLU)

(12.95)
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Here g is some constant. By writing this out in terms of the fields, and using
the expansion for U, we then find the baryon mass to be mp = ¢gfr and
the pion-nucleon coupling to be ¢g,5x = g. The pion-nucleon interaction
igN~+°T*N7® is the original Yukawa interaction, slightly modified to take
account of the pseudoscalar nature of the pion. The relation mp = g, yn fr
is known as the Goldberger-Treiman relation. (This is to the lowest order;
there are corrections to this relation, related to form factors for the axial
vector current.)

So far we have not addressed the explicit breaking of chiral symmetry.
The most important consequence is the mass term for the mesons. This is of
the form

2
Smass = % /d% TeM (U +UT - 2)

1 1
~ /d4:v [—§Tr(MM2) + 4—fQTr(MM4) +o| o (12.96)
The matrix M should have a structure similar to the quark mass matrix
to incorporate the pattern symmetry breaking due to the quark masses and
mass differences. We can take it to be of the form

0 0
a 0 (12.97)
0 b

M:

o o e

with @ ~ a’ because the up and down masses are approximately the same,
and b > a,a’. The as yet unknown coefficents a, a’, b may be related to the ex-
perimental meson masses. Expanding out (12.96) and identifying the masses
in terms of a,a’, b, we get one of the Gell-Mann-Okubo mass formulae,
3mi~ 4mi —m (12.98)

which is in reasonable agreement with the experimental values. There are
other sources of symmetry breaking as discussed earlier, and some of these
can also be incorporated nicely in the effective action; we will not discuss
them further.

As another example of the use of the effective action, we consider the
m — 7 scattering at low energies. For this purpose we can neglect all the
K,n terms in (12.92) and write M = 7 - m/1/2, where the 7% are the Pauli
matrices and 7 = (7! +472)/v/2 and 73 = 7°. There is an obvious SU(2)y
subgroup which acts on these fields; it is called the isospin symmetry. We use
7 for the Pauli matrices because here they are applied to the flavor isospin
symmetry. The terms in the effective action (12.91) which are relevant for
m — 7 scattering are

1

1
Smt——4—ﬁ/d4x [ﬂ-ﬂaﬂﬁ-ﬁ“w—gmi T (12.99)
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We consider pion-pion scattering with the isospin labels and momenta as
(k1a)(k2b) — (ksc)(ksd). The scattering amplitude for the process is given
by

(ksc, kad)S|kia, kb V(ky 4+ ko — ks — k) A

1
=T ——
> 1:[ 1/2(.«)]%‘/

) _ 2 t— 2
A=i [&;b&;d (%) + dacObd (Tmﬂ)

u—m2

+5ad5bc <f772rﬂ)‘| (12100)

where we have introduced the so-called Mandelstam kinematic variables, s =
(k1 + ko)?, t = (k1 — k3)?, u = (k1 — k4)?, which also obey s + t +u = 4m?2.

By taking a = b = ¢ = d = 3, we get the amplitude for 7%7° — 7070

as A = im2/f2. For 7Tn~ — 79%7° we need a = b =1,a = b = 2 and
a=1,b=2,a=2,b=1and c=d=3. This gives A = i(s — m2)/f2.

It is also interesting to work out the currents for the chiral symmetries.
We find

2
T = =i Tt 9,U U
2
Jh, = ifT‘r(t“U‘lauU)
2
Top=Jip+JIp = 5Tt (U~19,U —0,U U™)

2
Taw = Jip = iy = —i7 Tt (U '0,U+0,UU")  (12.101)

When these are expanded in powers of M, the terms involving just the pion
fields are

1

Ji, = §fﬁ8#7ra — —e®erby, ;e 4 ..

2

1 1
) A 56“”%’7%0 SRS

Sy, ~ —eabcwb(?#wc + -
Sap = JrOum® + -+ (12.102)

Notice that the formula for the axial vector current, which corresponds to
the spontaneously broken symmetries, is in agreement with the general result
(12.70). With the one-pion state |kb) we get

(075, Ikb) = —i frk, 67— (12.103)
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If J4, 1s conserved, the above relation gives k2 = 0 as is appropriate for

massless particles. In the present case, the current is not conserved because

of the explicit breaking due to the quark masses. From the above relation
—ikx

a a €
(00, TG |kby = —m2 f6 b\/TT (12.104)

This is known as the PCAC (partial conservation of axial vector current)
relation.

12.11 The range of validity of effective Lagrangians and
unitarity of the S-matrix

The effective action for chiral symmetry breaking in QCD captures the low-
energy features of the theory. This action was written down based on symme-
tries, although, in principle, such an action can be derived starting from the
QCD action. There are many other situations where such an effective low-
energy action can be constructed and used for many calculations. In some
sense, all actions we use are of this nature, since the high-energy behavior of
the standard model of particle interactions has not been tested beyond a cer-
tain point, approximately a T'eV. Clearly there is a certain range of validity
for the use of any effective Lagrangian, since it is based on a low momentum
approximation. For scatterings and other processes beyond a certain cut-off
value of momenta, the effective Lagrangian will have to be modified. Also,
generically, an effective Lagrangian will involve terms which are not renormal-
izable. Calculations have to be done with a cut-off. One can then ask whether
this cut-off value can be estimated starting from the effective Lagrangian it-
self. This is especially important in situations where we do not know the
high-energy version of the theory, having obtained only a phenomenological
theory based on low-energy experiments. We will now show how the unitarity
of the S-matrix provides one way to make an estimate of the cut-off.
As shown in Chapter 5, the scattering operator is given by

S = U(oo, —00)

/ d*z Lint(bin, Xin, ---) (12.105)
Yy

0

U(a®,y") = Texp

U is a unitary operator and this leads to the unitarity condition StS = 1.
This condition is a statement of the conservation of probability in the theory.
The fields in £;,; are the free in-fields.

The unitarity of the S-matrix gives certain general constraints on cross
sections, decay rates, etc. For example, consider the scattering of two particles
of momenta ki, k2 into any number of particles. The initial state is given by
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|i) = |k1, k2). For simplicity assume that incoming particles are not identical
particles. By writing S = 1 + ¢T, the unitarity condition becomes

i(T—-TH+TIT=0 (12.106)

Taking the matrix elements of this relation for the state |i), and using the
completeness relation for the states, >, [f)(f] =1, we get

D HATIP = =i (i)(T = T)li) (12.107)
N

(Here we will assume that the forces are of short range, so that there is
no divergence in the forward scattering amplitude.) (f|T'|¢) is the transition
amplitude for the initial state |¢) to be scattered to the state |f). It is of the
form

{(fITi) =

1 1 1
2m)45™® —ky — ko) Myi || ——
TV ooy o) Q_p =k k) My 1:[ NG
(12.108)
where My; is the invariant amplitude. Calculating the total cross section o

from here, we find

V (k1 - k9)? — mim3
Wi, W,V

S ST = o7 (12.109)
7

where 7 is the total interaction time and we have used the formula for the
flux (5.52).

In (i|T|i) , we have the same initial and final states, so that the momentum
conserving d-function should be replaced by V7 as explained in Chapter 5.
We can then write

1 1

i) = —— |4 é 12.110
<l| |l> 2wklv 2Wk2v T M ( )

M; is the invariant amplitude for the (elastic) forward scattering since the
final state is the same as the initial state. Using results (12.109) and (12.110)
in the unitarity conditon (12.107), we get

(M — M%)
4\/(/€1 . k2)2 — m%m%
ImM;;
= (12.111)
1
(5 — m? — m3)2 — dmZm3]?

o= —1

where s = (k1 + ko)?. Equation (12.111) between the total cross section
and the imaginary part of the forward scattering amplitude is known as the
optical theorem.
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Unitarity also imposes restrictions on how fast cross sections can grow
with energy. The general way to demonstrate this explicitly requires finding
a basis which partially diagonalizes the scattering matrix, such as an angular
momentum basis which corresponds to the partial wave analysis of the ampli-
tude. Here we will do a simpler analysis just to illustrate the point about the
unitarity constraints. Consider the elastic scattering of two spinless particles
with the momenta ki, ke — p1, p2. We will use the center-of-momentum
frame, in which case ki + ko = 0. The basic kinematic variables are thus
s = (k1 + ko)? and the scattering angle k1 - p; = |k1| |p;| cosf. The invariant
matrix element M is a function of s and cosf. Using the formula (12.108),
we can calculate the total cross section as

/ Ppr 1 dPpy 1
4\/(k k2 — mlm 27)3 2wy, (27)3 2wy,
><(27r)46 4)(p1 + p2 — k1 — ko) M[?

1 2
= ds? 12.112
647T28|M| P ( )

dael =

where we have used the kinematic result

[(s = mi — m3)* — 4mimj]

|2
4s

Ipy|” = |p2|2 = (12.113)
The quantity ImM;; which occurs in (12.111) is the imaginary part of the
elastic amplitude evaluated at § = 0. We thus have an obvious inequality

(ImM;;)? < [MJ?(6 = 0), which leads to

64m2s doe;
2 < ¢ 12.114
R (P g gy v (drz ) L (12.114)

We can now apply this line of reasoning to terms in the effective La-
grangian which are of dimension higher than zero and hence non-renormalizable.
As an example, consider a term like

Lint = g/d4w (00)*X* (12.115)

where we have two scalar fields ¢, x of masses m; and ms, respectively. g
is a coupling constant of dimension (mass)~2, analogous to the parameter
1/f2 in the effective Lagrangian for mesons. To lowest order in g, the elastic
scattering amplitude for ¢ x — ¢ x is given by

M = 4g kl D1 (12116)

where k1, p; are the momenta of the p-particle before and after collision,
respectively. For the cross sections we get
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(dael ) _ 92 m4
= 1
ds2, ) o, 4m?s

9’ 1
0o = (wﬁl + —p‘{> (12.117)

s 3

Notice that o; grows like s for large s. Since o < o, the inequality (12.114)
becomes, for large s, ,

52 < d8mmy (12.118)

g

The unitarity bound is not respected by the lowest-order calculation for s >
\/48mm? /g. The effective theory has to be replaced by a more fundamental
theory, or at least a theory with more fields included, before we get to this
energy. (This is a very approximate bound; more stringent bounds can be
obtained by a more detailed analysis of unitarity.) In essence, this argument
is valid even if loop calculations are taken into account. One can impose a cut-
off on the loop momenta of the effective theory, construct an effective I" which
will be a series of terms with higher and higher dimensions. S-matrix elements
can be calculated by solving the equations of motion for I" and evaluating
I' on the solutions, following (8.115). The calculation is essentially what we
have done here. Unitarity bounds can be viewed as giving constraints on the
parameters of I

12.12 Gauge symmetry and the Higgs mechanism

So far we have discussed the spontaneous breaking of a global symmetry
where the transformation matrices are constant as a function of the spacetime
coordinates. When we have spontaneous symmetry breaking for a symmetry
which is local, in other words, for a gauge symmetry, Goldstone’s theorem
does not apply. In this case, we get massive gauge bosons. This can be illus-
trated by considering the U(1) gauge theory.

The action for a U(1) gauge theory with a complex scalar field is

S:/d4:17

where the gauge transformations are given by

2
B 4 (D) (D) — A <¢*¢> - 7) ] (12.119)

A, — AL =A,+0,0(x)
¢ — ¢ =exp(ied(x)) ¢ (12.120)
This model is often referred to as the Abelian Higgs model. (In this section,

we will use ¢ for both the classical and quantum fields, since we need to
go back and forth in our discussion.) The energy corresponding to (12.119)



12.12 Gauge symmetry and the Higgs mechanism 267
is minimized when ¢ has a value v/y/2 which is realized in the quantum

theory, as before, as the vacuum expectation value. For fluctuations of the
field around this value, we parametrize ¢ as

, 1
¢(@) = exp (ieg(z) ) Z5(v+p) (12.121)

Substituting this into the action (12.119), we get

1 1 1
S= /d4:v = B P + 5(3Hp(9“p) + §e2WMW“(U + p)?
2 2 3 A 4
- p® — Avp® — 1P (12.122)

where W, = A, — 0,§. We can rewrite the theory in terms of W rather than
A. Since the relation between the two is in the form of a gauge transformation,
F,,(A) = F,,(W). Thus,

S=8w+S,+ Sint

1 1
Sw = /d4x —ZFW(W)F“”(W) + §e2v2WMW”]

S :/d4x %(8;))2—%(2)\1)2);)2}

- ) \
Sint = /d4x e%pWMW” + %pQWHW“ — wp® — Zp4] (12.123)

The particle content can be read off this action. We have a massive gauge-
particle, of mass ev. The kinetic term for ¢ has led to this mass term for W,.
There is a massive scalar particle p with m? = 2\v2. Then there are a number
of interaction terms. Notice that there is no massless Goldstone particle. The
would-be Goldstone field is £(z) in the parametrization (12.121). But, from
the gauge-transformation property (12.120), we see that this field is like a
gauge parameter. In fact, since ¢ and e¢**?¢ are physically equivalent, we can
even write the vacuum value of ¢ as ety / V/2 for some function 6 and choose
0 appropriately to get rid of ¢ from the field ¢. This is to say that it can be
moved into the gauge potential by a gauge transformation, which is what we
have done when it is absorbed into the vector field W,,. The action (12.123)
is thus displayed in a particular gauge; it is called the unitary gauge. We
can do further gauge transformations to write this in other gauges, when the
W2-term will have the form (W + 960)2. This method wherein the would-be
Goldstone field is absorbed by the gauge field, which then becomes a massive
field, is known as the Higgs mechanism.

It is interesting to see how the gauge symmetry is important in removing
the massless modes using a Hamiltonian framework somewhat along the lines
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of our discussion of the electromagnetic field in Chapter 6. We have already
seen that we can choose a gauge where Ay = 0 and then split the spatial
components as A; = AT + 9;f where AT is transverse, i.e., 9; A7 = 0. Using
the parametrization (12.121), the ¢-part of the action can be written as

so= [[ate S & - (e~ 1) - AT

202 1.
— [ats S @ - @e- - aral] a2z

where we have ignored the p-field since it is not important for this discussion.
It is clear that the transverse part of A; has a mass ev. The equation of motion
for £ is

£E—0:0,6=0 (12.125)

where §~ = & — f. The equation of motion for the Ag-component, or the Gauss
law for the theory, is

D10 f) — 20?6 =0 (12.126)
This can be solved for 5 , in terms of Fourier modes, as
=t T e
Using this in equation (12.125), we find
0? -
k- -k {@ +k-k+e2v2} & =0 (12.128)

For k # 0 we see that w? = k - k + e%v?, showing that this mode is also
massive, with the same mass ev. For this mode the result can be extended to
k = 0 by continuity. (It is possible to have a mode which is spatially constant
which is related to the orientation of the vacuum as before.)

We have already seen that the true gauge group of the theory is the set of
all gauge transformations which go to the identity at spatial infinity, namely,
G, in the notation of Chapter 10. It should be emphasized that there is no
breakdown of this true gauge symmetry here. In fact gauge symmetry is
crucial in removing the massless modes. What is broken is the global part of
the symmetry, corresponding to G/G.. To show how this works out in some
detail, we will use a gauge-invariant field x. In terms of the Coulomb Green’s

function G¢(x,y) we can construct a gauge-invariant combination of ¢ and
Ai as

Y = exp (— [ de)%(y)) " (12.129)

This is invariant under transformations which go to the identity at spatial
infinity. Under transformations which go to a constant at spatial infinity,
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x transforms as y — e*?(®)y. Thus y is gauge-invariant but has charge
since it transforms under G/G.. The potential V(¢) = V(x), so the vacuum
expectation value of x is v/v/2. This nonzero value for y is consistent with

the invariance of the vacuum under G.. In terms of ¢ we can write

(01410} = exp (— [ Gc<x,y>aiAi<y>) - (12.130)

The parametrization of ¢ in (12.121) becomes

- 1
6 = explicd) exp (—ie [ @ Gole.0din)) Js(w+p) (12131
Combining this with the Gauss law, we get
Sy = /d4x % [©* — (Vp)? — e*v?p?] (12.132)

where

/ k- -k -

The fact that the vacuum is defined by (0/x|0) = v/v/2, or equivalently
(12.130), shows that the G.-symmetry is not broken, even though we refer to
this situation as the spontaneous breaking of gauge symmetry. The vacuum
expectation value for x, however, does break the global part of the U(1)
Ssymimetry.

The Higgs mechanism does not change the number of degrees of freedom.
Before symmetry breaking, we have the modulus and phase of ¢ and the
two transverse polarizations of the gauge particle for a total of four physical
fields. After symmetry breaking, the gauge boson is massive and has three
polarizations. Combined with p, this still leaves four independent fields. The
would-be Goldstone boson becomes the third polarization of the massive
vector particle.

We will now consider how this extends to nonabelian symmetries. The
mass term for the gauge fields arises from the kinetic term for the scalar field
which is of the form

So= [ ' (D)D" 6)0 - V(d;00) (12.134)

where ¢, transforms as some representation of the symmetry group G. The
covariant derivatives are (D,¢)qs = Op¢q — ieA;:‘(TA)abgbb. When the vacuum
is such that ¢ has a nonzero expectation value, we can parametrize it as

ba = gab() %(Ub + pb) (12.135)

[\



270 12 Spontaneous symmetry breaking

The symmetry G is broken down to H C G. Since an H-transformation is
identity acting on v, + pp, only the G/H elements really appear in (12.135).
Substituting this in (12.134) and going to the unitary gauge, we get

1
Sy = / d*x {592 o"(TATP )0 Wit Apy, + p—terms (12.136)

where W;:‘ is the unitary gauge version of Aﬁ. The generators of the Lie
algebra of H annihilate the vacuum value v*, so the mass matrix is nonzero for
the coset directions. The gauge bosons corresponding to the broken generators
get masses, with a mass matrix given by (M?)48 = ¢2 vT(TAT5)v. One can
also easily check that the counting of degrees of freedom works out as well.

Finally, even though we have used a scalar field to describe the symmetry
breaking, it is possible, just as in the case of chiral symmetry breaking in
QCD, for composite operators to get vacuum expectation values and so break
the symmetry. The effective action for the Goldstone bosons then becomes
the mass term for the gauge particles.

12.13 The standard model

All the particles and interactions known to date, except for gravity, are de-
scribed by the standard model. This is based on the gauge group SU(3) x
SU(2) x U(1), where SU(3) corresponds to QCD and SU(2) x U(1) corre-
sponds to the electroweak interactions. There are gauge bosons corresponding
to these groups. The matter content falls into three types, the leptons, the
quarks, and the Higgs scalar field. The electroweak SU(2) x U(1) symmetry
is spontaneously broken down to a U(1) subgroup which is identified as the
gauge group for electromagnetic interactions. The electroweak gauge fields
couple differently to the left and right chiral components ¢, g = %(1 +°)y
thereby breaking parity symmetry explicitly. It is therefore easier to spec-
ify the transformation properties of various fields after separating the chiral
components. The covariant derivatives in general can be written as

Y
D,x = (au —ies AT — ightt® — ig’icu) X (12.137)

for any field x. Af, bji, ¢, are the gauge fields corresponding to SU(3), SU(2),

and U(1), respectively. ey is the strong interaction (QCD) coupling constant,
g,9’ are the coupling constants for the SU(2) and U(1) groups. T4, t* are
matrices corresponding to the generators of SU(3) and SU(2), respectively,
which are in the representations to which the field x belongs. Y is the U(1)
charge of the field y; it is called the weak hypercharge. The matter field
content of the theory is given in the table shown below. The fields [ denote the
lepton fields, @Q’s the quarks, and ¢ is the Higgs scalar field. Notice that the
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same pattern of fermionic fields repeats itself three times; these are referred
to as the three generations, usually called the electron generation, the muon
generation, and the tau generation. We could combine the notation by writing
', Q, etc., where i = 1,2, 3, label the three generations.

In the table, we have denoted the representations by their dimensions.
For the singlet representations, T4 and t® are zero. For the quarks which are
triplets under the QCD SU(3) group, we may take T4 = %/\A, A=1,2,---,8

with
0 1 0 0 —i 0
AM=1|11 0 0], =137 0 0
0 0 0 0O 0 O
0 0 1 0 0 —i
=10 0 0], Ad=1[10 0 0
1 0 0 i 0 0
0 0 0 0 0
Xx=10 0 1], AM=10 0 —i (12.138)
0 1 0 0 2 O
1 0 0 1 1 0 O
AM=[0 -1 0], ds=—=110 1 0
0O 0 O V3 0 0 -2
Matter fields in the standard model
SU(3) SU(2) U(1)
Field x representation|representation|charge
=), () () IR
€Jr \H/)p \T /L
Ir =er, R, TR 1 1 -2
U c t
(000, 0 | e |
d); \s); \b), s
UR = UR, CRr, tR 3 1 %
DR = dR, SR, bR 3 1 —%
¢+>
(b (¢O
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The T4 obey the commutation rules [T4, T5] = i fABCT where the struc-
ture constants f48¢ may be worked out from the explicit choice of matrices
given above. For the doublets of SU(2), we can write t* = %7’“, where 7%,
a =1,2,3, are the Pauli matrices and we have [t%, t*] = i¢?*“t°. The electric
charge of the field is given by Q = 3 + %Y. Given these matter representa-
tions, we notice that the transformation

2
§ = exp (i§T82\/§> exp (i2mt®) exp (inY) (12.139)

acts as identity. All the fields are invariant under this. § and its multiples form
a discrete subgroup C of SU(3) x SU(2) x U(1); and thus, strictly speaking,
the gauge group of the standard model is

SU(3) x SU(2) x U(1)

G= 12.140
- (12.140)
The relevant field-strength tensors for the gauge fields are
Fi, = 0,A) — 0,A% + e fAPCAL AT
GO, = 0ub% — D, b8 + ge®* bbb
f,uv = a,ucv - 81/C,u (12141)

The action for the theory can now be written as

S:/d4x [Eg+£j'+£yuk+£¢]

1 v 1 a aur 1 v
Ly = —ZF;ﬁ,FA” - ZGWG we Zf#,,f“

oY N . s 4a1.a -g/ i
Ly = Z Qi (@L — zeSTAA;j —igt®by, — ZE%) Q5
i . Aqa .29 i
+URY" | O — e T A, — i3 Cu Ug
!
+ Dy (au —ie,TAAN + i%cu) D,
gl . — .
EC“) I, + IRiv" (Op +ig'cu)lp
Lyur = —fljl10 1 — £5Q10 Up, — f5Q1¢ Dy + hee.

v ) ! 2 ’UQ
Ly = ‘ (au — gt — z%cu) (;5‘ )\ (¢T¢ - 7) (12.142)

1L iH (aH — igt“bl + i

Here ¢Z = i19¢" and h.c. stands for the hermitian conjugate. q~5 transforms
under SU(2) exactly as ¢ does, but has the opposite U(1) charge. l% stands
for the three charged leptons fields er, pugr, 7r. We have neglected neutrino
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masses, which are very small, and the right-handed neutrinos. The right chi-
rality neutrinos and neutrino masses can be included by use of the so-called
Majorana-type coupling and Majorana masses. We will not discuss these.

We now consider the simplification of the SU(2) x U (1)-part of the theory.
The scalar field action has a potential energy term which gives a nonzero
vacuum expectation value to ¢°. In other words,

ololo) = = (1) (12.143)

This vacuum expectation value breaks the SU(2) x U(1) symmetry sponta-
neously; the isotropy group of the expectation value (12.141) is the U(1)em
corresponding to electromagnetism which is generated by the electric charge
operator (). Thus we have the breakdown SU(2) x U(1) — U(1)em. The
combination -
_gbitge
/92 +g/2
is the electromagnetic gauge field and remains massless. Here sinfy, =
9 /\/g? + g’%; Ow is known as the Weinberg angle. The orthogonal combi-

nation

A, = sin Hwbi + cosbwey (12.144)

_9bi—g e
/g2+g/2

and the two fields Wf = (b, T ib%)/ v/2 become massive.

One can understand the particle content and the nature of the interactions
by exapnding around the vacuum expectation value given in (12.143). For the
Higgs field, a general parametrization is given by

Z, = cos b, — sinbywc, (12.145)

1 0
»=U(Q) 7 (U+77> (12.146)
where U(¢) = exp(i7%¢®/2) is an element of SU(2), (“(x) are the would-be
Goldstone bosons. When this is substituted into the Lagrangian, we see that,
by virtue of the gauge invariance, we can absorb the fields (¢ into the gauge
potentials; this is the transformation to the unitary gauge. In this gauge, the
gauge and Higgs terms of the electroweak part of the Lagrangian simplify as
follows:

L= _i(aﬂAlI — 31/14#)2 - i(auzu - &IZ;L)Q - %Iaqu - 8VW#|2

1 1 1
MWW 4 §M§Z#Z“ + 5(877)2 -3 20?4+ Lin
(12.147)
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Lint = —§|AHW,, - AW,? - g—;cos2 Ow | Z Wy — Z,W,|?
—ie A" WY (0, W,F — oW — W (0,W, —o,W, )]
—igcos Ow Z" (WY (8, W,f = 0,W,5) =W (9, W, —a,W,)]
+ieW T WY (9, A, — 0,A,) +igcos 0w WHW " (0,2, — 0,Z,,)
—egcosOw Z" [(A W, — AW W + (A, W,F — AW HW ]

9 - T i — D ——
—I—Z(W#WV—WUW#) +2TW Wu”"'FW W, n

2 2 2 2
+%Zﬂzﬂn + ;WTgZ“Z#HQ - %n?’ - %n‘* (12.148)
Here e = g sin Ay is the value of the electric charge of the electron. The masses
of the gauge bosons, to this lowest tree-level order, are Mz = %\/g2 +g%v
and My = %g v. Experimentally, Mz ~ 91 GeV and My ~ 80 GeV and
sin? Oy = 0.223. The electroweak scale v ~ 246 GeV. These values are
obtained from experiments. The mass of the Higgs scalar particle represented
by the field 77 is My = v/2X v. There is no numerical prediction for this mass
yet, since A has to be experimentally determined.

The Yukawa interactions Ly give fermions masses because the vacuum
value of ¢ is nonzero. These are generally mass matrices because the coupling
constants f;; are not necessarily diagonal. Consider how this happens in the
quark sector. The mass term which arises may be written as

Linass = —M3UL UL, — MDDy, + he.
v

MY = ;;75, M = f;j—2 (12.149)
Uy, Dy, are the chiral components of up and down quark fields, respectively.
The physical particles are mass eigenstates, so we have to diagonalize the mass
matrices M, M%. We will take these matrices to be of nonzero determinant.
If the determinant is zero, that means there is a zero mass field; we can then
separate it and apply the following argument to the rest of the matrix. Now
an arbitrary complex matrix M of nonzero determinant can be decomposed
as M = H U, where H is hermitian and U is unitary. We diagonalize H
by a unitary matrix S as H = STMdmgS. This shows that we can write M
as M = STMdiag(SU) = STMdmgT, where S and T are unitary matrices.
Thus M can be diagonalized by a biunitary transformation. We can use this
diagonalization to write the mass term as

Linass = ULS“MUT"Ug + DrSYMTDr + hec. (12.150)

P

where M® and M? are diagonal matrices. Now we redefine the quark fields
as

Ur — TYUR, Dp — THDpg
Uy — S“Up, Dy — S¥Dy, (12.151)
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so that B B
Emass = ULMuUR + DLMdDR + h.c. (12152)

The redefinition of the quark fields makes the mass term diagonal, but
changes the interaction terms with the W,,.

DL’}/#UL — DLSdSuT”Y#UL
UL’Y;LDL — ULSuSdT"y#DL (12.153)
Thus the interaction terms with the W-bosons is
_ 49 T —p g+
L= E(W “J# + W “J#)
I, = VigUpyuD1,
Jf =V;iDivU] (12.154)
where V;; = (S*S%);; is called the Cabibbo-Kobayashi-Maskawa (CKM)

matrix. It gives the mixing angles for the weak interactions of quarks.
The electromagnetic current is given by

2 _ 1, -
L =3 (Uv.Ur + UruUr) — 3 (DryuDr + DryuDr)  (12.155)

This is still diagonal after the redefinition of fields as in (12.151). Likewise
the current

1 - _
Jh = 5 (Uy.UL — Dy, Dy) (12.156)

is not affected. Further the Higgs-fermion interaction terms are proportional
to the mass matrices and get diagonalized when the matrices are diagonalized,
ensuring that the Higgs will not mediate flavor changing processes, in a one-
Higgs model such as the one we are considering here.

Collecting these results together, the quark part of the theory becomes

Louark = Uiy -0 — M¥)U" + D'(iry - 0 — M) D"
1. . 1_. .
——U'M{U'n— =D'M{D'n+ e A* J™
v v

9 z 9 e g T
zZrJ —(WTH]J W=rJ 12.157
cos Oy wt \/ﬁ( wt w) ( )

The neutral current Jf is given by

+

z 3 . 2
Jy =J, — sin” 0w J" (12.158)

For the currents in the lepton sector, we have similar expressions. Neutrino
masses are taken into account by including right-handed neutrinos; the left-
and right-handed neutrinos do not have the same mass, so that one needs to
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use so-called Majorana masses. If we neglect the neutrino masses, the lepton
terms become

Liepton = Niiy - ONj + E'(iy- 0 — ME)E" + Ling (12.159)

where N?, for i = 1,2, 3 stands for the electron-neutrino, the muon-neutrino,
and the tau-neutrino; likewise, E* denotes e,u and 7 for ¢ = 1,2,3. The
interactions of the leptons are given by

_ em g 7 g —+ — —_ +
Lint = eA*J zZrJ ——(WTHr]J W=HrJ
¢ =eAlJ] +cos9w “+\/§( Lt )
1_. )
—ZE'MC¢E'p
v
Jy = NivEj
JF = Ejv.N} (12.160)

Jﬁm — _EZ,Y#E’L
1 V& 1 ni 7 : em
Jf =3 (NL%LNL - EL%LEL) — sin? Oy Jy,

The CKM matrix V' is an n X n unitary matrix for n generations. But
it does not have n? physical parameters in it, since some of the angles can
still be absorbed into the definition of the fields. For example, we can write
V = Udiagf/U élmg, where U, U’ are diagonal unitary matrices; they are just
phases of the form e’ along the diagonal. There are n such phases in U, n—1
phases in U’, avoiding double counting of an overall common phase. U and U’
can be absorbed into the definition of Uy, and Dy ; the currents J3 and Jﬁm
are not affected by this, since U, U’ are diagonal. The mass terms change,
but we can simultaneously redefine Uz and Dpg, so that the mass terms
are also not affected. This shows that we can get rid of 2n — 1 parameters
leaving n? — (2n — 1) = (n — 1)? physical parameters in the CKM matrix.
For three generations, we thus have four parameters, corresponding to three
real rotation angles and one remaining phase. V' is not real in this case. The
fact that V is not real leads to C'P-violation due to weak interactions. The
C P-transformation of a fermion field is defined as

d(x) = C " (—m,2°) (12.161)

7@ denotes the C'P image of 1. From the invariance of the Dirac Lagrangian
Yiy - (0 — igh®t*)y) we see that the transformation of the gauge fields is

—bg (—, %) = bo, bl (—@,2°) = b, (12.162)

where T' denotes the transpose of b as a matrix. In terms of the components,
this becomes

by = —b3 (=) b} = b} (~x)
Wy =Wy (—=) Wi =W, (=)
Wy =Wy (—x) W, =W, (—x) (12.163)
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For the charged current interactions we then find
[ = [ [Emzvg " fymfﬂvﬁ]
/ Wk = / P {NZLWEQ + UZL%DJ'VZ;] (12.164)

It is then easy to show that the interaction part of the action obeys the
transformation rule

Sint(N, E,U, D, Vi) = Sint(N, E,U, D, V;3) (12.165)

We have CP invariance if V' = V*. For three generations of quarks, not all
matrix elements V;; are real and we have C'P violation.

Finally, notice that the presence of the gauge interactions and the Yukawa
couplings (which lead to quark masses as well) show clearly the explicit break-
ing of chiral symmetry for the quark sector discussed earlier. From the point
of view of the electroweak gauge symmetry, the spontaneous breakdown of
chiral symmetry in QCD will break the electroweak gauge symmetry and
this gives additional masses to the W, Z particles. But the energy scale of
chiral symmetry breaking is so small compared to the electroweak scale that
this effect is negligible compared to the masses due to the Higgs vacuum
expectation value.
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13 Anomalies 1

13.1 Introduction

Consider a classical field theory with a symmetry group G which may be
partially a gauge symmetry and partially a global symmetry. In defining the
quantum theory, one has to evaluate loop diagrams, some of which may be
divergent, and therefore the quantum theory has to be defined with the help of
aregulator. There are situations for which there exists no regulator preserving
all the symmetries. Symmetries of the classical theory which are broken by
quantum corrections (by choice of regulators) are said to be anomalous. The
corresponding currents have nonzero divergences which are called anomalies.

This point about regulators and symmetries can be illustrated by some
examples. Dimensional regularization has the great virtue that it preserves
Lorentz and vector gauge-invariance (or the corresponding BRST-invariance).
But v° = (i/4!))€mapy" v 7*? has no natural extension to arbitrary dimen-
sions (# 4) since it uses the e-tensor. Thus chiral symmetries are potentially
anomalous if we use dimensional regularization. Another common regulator
is the Pauli-Villars regulator, where we add very massive unphysical particles
with negative Hilbert space norm, the mass M serving as the regularization
parameter. But a mass term like M1 is not invariant under chiral transfor-
mations and so chiral symmetries are potentially anomalous.

Anomalies are of two types, anomalous global symmetries and anomalous
gauge symmetries. In the case of anomalous global symmetries, the symmetry
is not realized in the quantum theory, but otherwise the theory is consistent.
Examples are the axial U4(1) anomalies in QED and QCD. If such a symme-
try is spontaneously broken, we have a Goldstone boson classically. Quantum
theoretically, since there is no symmetry, there is no Goldstone boson. In fact
the quantum corrections generate a mass for the potential Goldstone boson.

Anomalies for a gauge symmetry can lead to unphysical results. The
gauge-invariance (or the related BRST-invariance) of a theory is crucial for
the proof of unitarity of the S-matrix or unitarity of time-evolution in general.
Gauge-invariance removes the unphysical polarizations of the gauge particles;
if gauge-invariance is lost, they can become propagating modes and ruin uni-
tarity. Thus in a consistent physical theory there should be no anomaly for
the gauge symmetries. There can be an anomaly for gauge symmetry in a
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subsector of the theory, but all the individual contributions to the anomaly
must cancel out in the end.

13.2 Computation of anomalies

We now turn to the computation of the anomalies, using the Euclidean field
theory for most of the calculations. In four dimensions, the anomalies are due
to fermion one-loop diagrams only. Consider the Euclidean action

1 1 _ _
§= / [EFf + @FJQ% + Yy - (0+ L)L +Yry- (0 + RWR]

= / [412 F?+ 412 FR4+9¢y-(0+V + 75A)1/)} (13.1)
where ¢, = 1(14+79°)¢, Y = 3(1—7°), and V = $(L+R), A= 3(L—R).
We consider N species of fermions with the chiral symmetry U(N ) xU(N)gr
We have taken all the chiral symmetries of the fermion to be gauge symmetry
so as to be very general. This means that we can write L, = —iTAL;i‘,
R, = —iTARﬁ, T4 being generators of U(N). One can specialize the results
to any subgroup of this maximal symmetry by setting some of the gauge
fields to be zero.

Notice that we do not write a fermion mass term because we are gauging
the axial symmetries as well; there is no gauge-invariant mass term if we
including the axial symmetries as well as vector symmetries. When we restrict
to a subgroup, we may have the possibility of gauge-invariant mass terms,
but the calculation of the anomalies is not affected by the mass term, so we
do not need to consider it. This will become clear later. The field-strength
tensors are defined by

Ff\,, =0.Ly —0,L + fAP°LELY
Ff = 0uR) — 0,R} + fAPCRERS
F, = 0.V =0, VA + fABCVEYE + fAPCAB AT (13.2)
Fi., = 0.A0 — 0 A0 + FAPC(VEAT — VP AD)
= (Du4y — Dy A"
where D is the covariant derivative with respect to the vector gauge fields

only.
One can add to the action (13.1) a term of the form

SReg = — Z/ < )F‘“’) (13.3)

for both the vector and axial vector gauge fields. This term, because of the
