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Matrix model of the sQGP with dynamical quarks



What to do in the sQGP, near Τχ?
Lattice: Tchiral = Tχ  ~ 154 ± 9 MeV. Borsanyi et al, 1309.5258; Bazavov et al, 1407.6387

T ≤ 130 MeV: hadron resonance gas (lattice)

T ≥ 400 MeV: (NNLO) HTLpt, Haque et al, 1402.6907
                Next-to Next-to Leading Order Hard Thermal Loop perturbation theory                     

What to do in the sQGP, between ~ 130 and ~ 400 MeV? 

Experimentally, the region near Tχ matters most at both RHIC & LHC

Develop effective theory, fixed by comparing to lattice simulations in equilibrum.
Then use to compute transport coefficients, e.g. η/s, near equilibrium.
Here s=semi-QGP, in a matrix model with dynamical quarks.  

Other models of the sQGP: quasi-particles models; e.g. Parton-String Dynamics
Polykov loop models, center domains, holography (AdS/CFT),
dyon liquids, functional renormalization group, background field method…



Anderson Localization

In a random medium, waves don’t diffuse.
As a wave scatters off of random impurities, it gains a phase from each scattering

Let the phase for a given scattering be eiθj .  In the limit of infinitely many
scatterings, the total change in the wave function is

1X

j=1

ei ✓j !
Z 2⇡

0
d✓ ei✓ = 0

Probability distribution of wave function is localized
Not because of infinitely heavy mass: rather, phase decoherence.
Quantum metal-insulator transition.  



Analogy: Confinement ~ Localization
’t Hooft: hidden (global) Z(3) symmetry in (local) SU(3)
T=0: Quarks get Z(3) phase, e2 π i j/3 , as they move through each random domain

Confinement from phase decoherence of quark wave function (not ∞ heavy mass)
Infinite T: one big Z(3) domain ⇒ phase coherence
Hu et al, 0805.1502: use ultrasound to study brazed aluminum beads
      localized = confined                         delocalized = deconfined

2X

j=0

e2⇡i j/3 = 1 + e2⇡i/3 + e4⇡i/3 = 0
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What the lattice tells us about the pressure
Consider e-3p, divided by pSB = pStefan-Boltzman.
For pure SU(Nc) glue, e-3p/pSB is ~ independent of Nc.
With quarks, e-3p/pSB changes with Nf : “flavor independence” not.

Pure Glue: Nf  = 0, Nc = 3…8 
      Tc = Tdeconfinement = Td
Panero, 0907.3719
Datta & Gupta, 1006.0938
Borsanyi et al, 1204.1684

QCD: Nf  = 2+1, Nc = 3
      Tc = Tchiral = Tχ
Borsanyi et al, 1309.5258; Bazavov et al, 1407.6387
With all lattice results, band is an estimate of error in continuum extrapolation
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Lattice: for pure glue, T2 term in pressure, but not in QCD

T/Tc→

Pure Glue ⇑ 

lattice QCD ⇓

Panero, 0907.3719
Datta & Gupta, 1006.0938
Borsanyi et al, 1204.1684, 1309.5258
Bazavov et al, 1407.6387

Lattice: for pure glue, corrections to T4 term in pressure are nearly pure ~ T2.
Not true with quarks; corrections to T4 more complicated
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Matrix model of pure glue in the semi-QGP
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Take simplest ansatz, constant diagonal background A0 field.  Polyakov loop:

At T = ∞, complete deconfinement, q = 0.  At T < Td , confinement, with q = 1.  
In between, ∞ > T > Td , is the “semi”-QGP, with 0 < q < 1
To one loop order, perturbative potential for q:

By hand we add a non-perturbative potential for q 

Dumitru, Guo, Hidaka, Korthals-Altes, RDP , 1011.3820, 1205.0137.
Tdeconfinement = 260 MeV; c1 = 0.32; c2 = 0.83; c3 = .87

q=1/2:



Matrix model with quarks
Couple scalar field Φ, invariant under flavor SU(3)L×SU(3)R×U(1)A, to quarks:

Φ: JP = 0-: π , K , η , η’. JP = 0+: a0, κ , σ8, σ0 .   Yukawa coupling y between 
Integrate quarks to one loop order. Gives quark potential for q, couples q to Φ…
Also need non-perturbative potential for Φ:
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Lenaghan, Rischke, Schaffner-Bielich, nucl-th/0004006.  
Integrating over quarks gives a 
novel Counter Term in 4-ε dimensions:

As usual, H ~ mquark.  
At high T, also need to 
add a new term ~ mquark:,
to cancel h  i ⇠ mqk T

2



In a matrix model, Tχ ≪Tdeconfinement 

With dynamical quarks, precise definition of Tχ as mπ → 0.
No precise definition of Tdeconf

Keep Tdeconf = 260 MeV  as with pure glue
Then tune the Yukawa coupling y to get Tχ ~ 154 MeV: so Tχ  ≪ Tdeconf

Treat 2+1 flavors: H ~ diag(mup , mup , mstrange).  ⟨Φ⟩ = (Σup , Σup , Σstrange)

Input: the masses of π, K, η, and η’; also, fπ .  Σup = fπ /2 = 46 MeV.

Output (MeV): hup = (122)3; hstrange = (384)3 ; Σstrange = 76; fK = 122.

Tχ not very sensitive to Yukawa coupling y: Tχ ~ 154 MeV for y ~ 4 - 4.5
Masses: σ0 ~ 376 ; a0 ~ 980.  

In sigma model, parameters m = 506; cA = 4560; λ ~ 28.



Matrix model: order parameters, chiral and deconfining
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Following: use mean field for Φ, neglect any fluctuations in Φ

Below: ratio of chiral condensates, (T≠0)/(T=0)
Polyakov loop: as for pure glue, loop in matrix model > loop from lattice:  puzzle

" hloopi



Chiral susceptibilities

At Tχ, susceptibility for light-light > light-strange > strange-strange. No surprise
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Chiral-loop susceptibility: divergence!
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At Tχ, loop-loop susceptibility has mild peak.  But loop-up has big peak!
In chiral limit: at Tχ, divergence in both chiral and chiral-loop susceptibilities
                                        Sasaki, Friman, Redlich hep-ph/0611147

mπ = 0, Τ ~ Τχ :
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Results for matrix model: μ = 0, e-3p
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Compare to lattice and to (NNLO) HTLpt, with quark chemical potential μ = 0
HTL pert. theory: band = changing renormalization mass scale, 2πT, by two

HTLpt⇑ 

 lattice QCD⇓  ⇐ matrix model

T→Lattice: Bazavov et al, 1407.6387
(NNLO) HTLpt: Haque et al 1402.6907
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Results for matrix model: μ = 0, pressure

Lattice: Bazavov et al, 1407.6387
HTLpt: Haque et al, 1402.6907



Generalized susceptibilities for quark chemical potentials

With quarks, several conserved flavor currents:
baryon number (B) & strangeness (S) (= light quarks (L)); electric charge (Q).

Quark chemical potential for each current: μB, μS (~ μL); μQ.  Set  μQ = 0.

The pressure is a function of temperature, T, and both μB and μS 

Instead of plotting function of three variables, useful (and computationally clean)
to compute derivatives of the pressure with respect to μB and μS :

�XY
ij =

@i+j

@(µX/T )i@(µY /T )j
p(T, µX , µY )

����
µX=µY =0

Bazavov et al, 1304.7220
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Second moment, light quarks
Simplest thing is the second moment.  
Constituent quark mass suppresses χ2up at low temperature.
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Lattice: C. Schmidt,  PoS(LATTICE2014)186; Bielefeld-BNL-CCNU Collaboration, in preparation 
HTLpt: Haque et al, 1402.6907
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Lattice: Borsanyi et al, 1305.5161; 1507.07510
HTLpt: Haque et al, 1402.6907
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A good test: sixth moment, baryons
For massless quarks, order by order in pert. theory only terms ~μ4 in pressure.
So HTL pert. theory gives χ6 ~ d6p/dμ6 ≪ 1.
Matrix model, with mdynamical ≠ 0, gives characteristic change in sign of c6 near Tχ.
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 ⇐lattice QCD ‘15

Lattice: C. Schmidt,  PoS(LATTICE2014)186; Bielefeld-BNL-CCNU Collaboration, in preparation
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Lattice: C. Schmidt,  PoS(LATTICE2014)186; Bielefeld-BNL-CCNU Collaboration, in preparation 
HTLpt: Haque et al, 1402.6907

 matrix model⇒



An even better test: off-diagonal susceptibilities

v1 = �BS
31 � �BS
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Lattice: Bazavov et al, 1304.7220 
HTLpt: Haque et al, 1402.6907
To be computed, v2:
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Off-diagonal susceptibilities, such as Baryon-Strange (BS), are a good test

Green: χ2B - χ4B

points: lattice
line: matrix model

(Black line:
Polyakov loop/3
in matrix model)
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Magenta: HTLpt
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Summary
Took matrix model for pure glue, and included dynamical quarks by adding:

1. Linear sigma model for π’s, K’s…
2. Yukawa coupling y between quarks and π’s, K’s…

Determined parameters:

1. Linear sigma model: fit fπ and masses of π, K, η and η’
2. Keep Tdeconf = 260 MeV, tune y to get Tchiral = 154 MeV (Tchiral  ≪ Tdeconf )

Good fits to thermodynamics quantities, especially χ6 and  χBS.  
Matrix model works much better in the sQGP than (NNLO) HTLpt. (duh)
                           To dream the impossible…: NNLO HTLpt plus matrix model.

Next: chiral critical end-point? Stephanov, Rajagopal, & Shuryak 9806219

More generally, phase diagram in T-μ plane, for both real and imaginary μ
                                                                                             Kashiwa & RDP, 1301.5344



Given a matrix model with dynamical quarks, can then directly compute
to leading (logarithmic) order:

shear viscosity
Hidaka and RDP, 0803.0453; 0906.1751; 0907.4609; 0912.0940 

production of dileptons and photons
Gale, Hidaka, Jeon, Lin, Paquet, RDP, Satow, Skokov, Vujanovic, 1409.4778
Hidaka, Lin, RDP, Satow, 1504. 01770

energy loss of heavy quarks
Lin, RDP, Skokov, 1312.3340

Still need to compute: energy loss of light quarks

To do


