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1. Phase transitions in mean field theory, and not
four dimensions

first order transitions from negative coupling
fluctuation induced transitions




Mean field theory: phase transitions at T =0

Consider scalar field ¢ invariant under global Z(2) symmetry, ¢ — —¢:

1 1
L= 5(%@2 + §m2¢2 + Ag?

In four dimensions, most general renormalizeable Lagrangian.

For stability at large ¢, A > 0.
Only phase transition possible is m? — 0

o)

In four dim.’s, only a second order transition 1s possible.
Mean field theory works, up to logarithmic corrections:
A is dimensionless, “runs” log.’y in 4D.




First order phase transition at' T =0

Now drop the global Z(2) symmetry, so all powers of ¢ are allowed:

Lz%(8Mgb)2+hqb+%m2gb2+/ﬁz¢3+)\gb4

The linear term, ~ h, 1s like a background field, so < ¢ > 1s always # 0
Because of the cubic term, cannot “zero” the potential:

|
\ m2:O m2<0

With no “flat” potential, always have barrier between degenerate, but distinct,
vacua. Masses, etc, are different in two vacua, so:
cubic invariants generate first order transitions




First order phase transitions at T # 0

Imaginary time t: 1 — 1/T. So theory 3-dimensional for distances >> 1/T.
Again, take global Z(2) symmetry, ¢ — —®:

L= 50,00 + 5 m® 6+ X 6 €68

Renormalizability => ¢¢: £ dimensionless, A ~ mass.
Stability => E > 0, so A can have either sign. }\"l\

First order transition from negative quartic coupling. :
5 q pHng <= 2nd order line

General phase diagram in plane of m2 and A: L .
ri-critical point

m? =0, A >0 : second order transitions
m?2 > 0, A > 0 : first order transitions
m?2 = A =0 : “tri-"critical point.

L 2
st order®»,
L 2

Tri-critical point: mean field + logarithmic corrections line =>*.,
Critical point very difficult: power law corrections to mean field theory!




Renormalization group in 4 - € dimensions

Consider theory with Z(2) symmetry, interaction ~ A ¢*
Wilson-Fischer 72: in 4 - € dimensions, A has dimensions of (mass)e.
Construct B-function for the “running” of the coupling:

First term from mass dimension of A.

Second term from one loop diagram,

and positive: L — 0 in infrared limit,

Why? Euclidean action exp( — A ¢*), (-)2 =+
For small €, power law behavior of

critical point calculable.




Renormalization group: two couplings

Now consider a theory with O(4) x O(2) symmetry:
¢' = complex valued field with four components.

There are two possible couplings, first O(8) invariant, second just O(4) x O(2):

1, -, 1 . Lo Y o
L= 2 10u8° + 5 m? (6] + 21 (8" - 6) + X2 (67 - 6)(6- )

[3-functions:
BAN)=—eXi +16X2 +14X X+ 33
B(A2) = —€ Ao + 12X Ay + 1023

Yawn. All signs positive, as according to previous argument.
But now couplings run to negative values!

“Fluctuation induced” first order transition = Coleman-Weinberg phenomenon.




Running couplings: 2nd order vs fluc. ind’d 1st order
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O(-2) x O(-2): IR stable fixed point, O(4) x O(2): IR unstable fixed point,
2nd order transition fluctuation induced first order




2. Chiral phase transition




Chiral Symmetries of Massless Quarks
For quarks in QCD:

= YLDV R DG+ m (W + P pd)

Equark

where [0 = (0, —igA,), ¥r.r = (1 & v5)1/V2 . Thus massless quarks are
invariant under a global symmetry, b 0 b
. Y Y ¢%,R — E,R e’ 75¢L,R

which is a classical symmetry of G% = SUL(N;) x SUr(N¢) x Ux(1)

Because of quantum mechanical effects: the axial anomaly, and instantons, the
axial U(1) symmetry is only Z(Ny):

__aiag...an, .91 ,aq — ANy OGNy
Linst. = € Fp YR - Y g

Thus the quantum symmetry 1is u
" qUAntm 55 Y G?c :SUL(Nf)XSUR(Nf)XZ(Nf)

This becomes Gy = SUy (INs)when all quark masses are equal.



Evaporation of Chiral Symmetry

Assume chiral symmetry broken at T=0, restored at Tchiral :

Construct ab __ 74 b _
¢ =9 YR (DL R)

where |
® — e Ul ® Up _
The 1nvariant (interaction) Lagrangian is : T

{
Tchiral

L7 = X\ (tr ®TD)% 4+ Ao t1(PTP)? + ¢;,,50 det P

det ® ~ (I)Nf For three flavors, IF Cinst 1S nonzero at Tehiral, first order trans.!
What if instantons evaporate before Tchiral 7 Cinst (Tchiral) << Cinst (0)?

Calculation in 4 - € dim.’s shows: RDP & Stein, ’81; RDP & Wilczek ‘84
fluctuation induced first order transition for Nf = V2 + O(e).

QCD: for two flavors, chiral transition either first or second order.
Three or more flavors: first order. IF one can ignore deconfinement!
N.B.: quark (~ pion) masses weaken any 1st order trans.




Effective theory for two flavors
For two flavors, can rewrite SUL(2) x SUR(2) ~ O(4):

<I>:< ¢o + P3 ¢1—i§b2>
¢1 + 192 o — @3

Similarly, axial U(1) ~ O(2).

Effective theory, including instanton interaction, 1s

. L2 o
L=10,9° + %mQ O* + Cinst(0* + ¢7)

A (0% B)2+ Mo (6 6%)(D - @)

For real ¢, chiral symmetry breaking by m? < 0: massive o0 plus massless 7t’s.

With complex ¢, when cinst nonzero, also have massive 1 plus three massive f’s.




3. Deconfining phase transition




Hidden Z(N) symmetry in SU(N)

Start with SU(N) gauge theory without quarks.
Work in imaginary time, t: 0 -> 1/T. Bosons periodic, fermions anti-periodic.
‘t Hooft: “hidden” global symmetry: consider gauge transf.

. N N 1 1 0
2maT T t NN N—1
Ur) =¢ b _N( 0 —(N—1)>

tNN: 03 for two colors, A8 for three colors. |
Independent of x, so global. Further, Q(1/T) = 2™/ N 1y
at T =1/T pure phase, proportional to unit matrix!

Under a gauge transformation, 1 ;
A — Q'D,, Q ()
this € ok for gluons, not for quarks: w —ig H Y=Y

The Z(N) 1s related to the center of SU(N) (commute with all group elements).
Symmetry non-local in T. How to probe it?

Z(N) symmetry could be completely washed out by quarks. Dynamical question.




Z(N) symmetry and Polyakov loops

Wilson loop that wraps all the way around in T = Polyakov(-Susskind) loop:

1

/T
— tr Pexp(ig/ Ao(x, ) dT)
N 0

Not invariant under all gauge transf.’s: ¢ 2™/ N p

Use Polyakov loops to test response to Z(N) charge.
Loop like propagator of infinitely massive test quark.

Confinement => <loop> = 0 at low temperature.
Deconfinement => <loop> # 0 at high temp. 1 -
above Taecont . Opposite to chiral symmetry.

<loop>"
Classify transitions by change in <loop>.

Quarks act like background Z(N) field.

Assume overall normalization of loop physical.




Z(N) symmetry and deconfinement

Classification of possible deconfining phase transition:

2mwi /N
construct Z(N) invariant theory, t—e ¢

L= 10,47 +m2 17 + A7) + 5 (6N + (6)Y)

Blue terms inv. under U(1); red terms, under Z(N).

For N=2: symmetry Z(2) = Ising. Can be second order.

N=3 (QCD!): cubic invariant, so always first order.

N = 4: last term marginal or irrelevant: can be either first or second order.

Svetitsky & Yaffe, ‘82

Lattice: deconfining transition second order for N=2,
first order for N = 3.




Lattice: SU(3) glue, with quarks

Cheng et al, 0719.0354: e = energy density, p = pressure. Ny = # time steps: 4, 6.
Three flavors of dynamical quarks: close to QCD.
Crossover, no true phase transition. (Ideal gas: e = 3p)
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Lattice: SU(3) glue, no quarks: weakly 1st order

More sensitive than pressure: (e-3p)/T%, e = energy density, p = pressure
Bielefeld, hep-1at/9602007. N = # time steps: 6, 8 near continuum limit?
Pressure: sum of ideal gas, T#, plus T2 , then “MIT bag constant”, TO.

2 11T
it (e 3p9/T :
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0 327x6 L =# spatial lattice spacings
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Lattice, no quarks: SU(3) close to SU()?

Bringoltz & Teper, hep-1at/0506034 & 0508021 _ 3

SU(N), no quarks, N=3, 4,6, 8, 10, 12. €9 const.
Deconfining transition first order, latent heat ~ N2, N2T#

Hagedorn temperature Ty ~ 1.116(9) T, for N = o

2

o N=8,8°X5
> N=3,20°x5
—— N=3,32°x6, Boyd et al.
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4. Possible phase transitions:
deconfinement versus

chiral symmetry restoration:
many possible scenarios!




One transition

Deconfining and chiral transitions coincide:
go from confined phase with ¥SB’g to chirally symmetric Quark-Gluon Plasma.
Natural if transition strongly first order. Otherwise, not obvious.

l.—

hadronic

T Tya=T,1

Lattice: case in all simulations to date, for quarks in fundamental representation.
But: perhaps not generic?




Lattice, ~ QCD: one transition

Cheng et al, 0719.0354: chiral order parameter, (renormalized) < loop >
No true phase transition, only crossover. But:
Within errors, two transitions ~ coincide (T¢ from peak in susceptibilities)
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Lattice, ~ QCD: one transition

Cheng et al, 0719.0354: (renormalized) Polykaov loop, chiral order parameter
No true phase transition, only crossover. But:
Within errors, two transitions ~ coincide (T¢ from peak in susceptibilities)
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Adjoint quarks: two transitions, Ty > Tq

Color adjoint “quarks™: ¥ sym of 4 Majorana flavors SU(4)->SO(4); O(3) fixed pt
Exact Z(3) and chiral sym.’s: 1st order trans. at Tq, 2nd order chiral at T;,.
But Ty ~ 8 Ta! Due to larger Casimir, and so coupling, of adjoint quarks

Karsch and Lutgemeir,
hep-1at/9812023

Basile, Pelisetto, & Vicari,
hep-th/0412026

DeGrand, Shamir & Svetitsky,
0812.1427




Many flavors: one chiral transition?

Consider SU(3) color with many (light) quarks: strong background field for Z(3)
< loop > increases from zero, always “large”.

At best chiral transition, of first order. Drags change in < loop > along with it.
Not dominated by deconfinement, but by chiral sym.

Appelquist, Fleming, Neil 0901.3766: eight flavors not conformally invariant




“Quarkyonic” matter: Tq> T,

Consider SU(N) color for N —, N fixed, at nonzero density.
Possible to have a chirally symmetric, but confined phase: “quarkyonic”
Manifest in Skyrme crystal. Below for 3 colors?

McLerran & RDP, 0706.2191; McLerran, RDP, & Hidaka, 0803.0279
N.B. Anomaly constraints important, RDP, Tytgat, & Trueman hep-ph/9702362




N'=4 SU(o0)
AdS/CFT: Can define <loop> =1 at T = 0 (Polyakov-Maldacena, + scalars)

At T # 0, <loop> = constant (like pressure/T#) : value, vs g> N?
N'=4 SU() is always deconfined.
Hartnoll & Kumar, hep-th/0610103: also consider <scalar>’s




Punchline: QCD & the “sem1”-QGP

T'hree regimes: hadronic, <loop> ~ 0.

“Semi”’-QGP: <loop> # 0, < one. With quarks, both below & above T..
Hadrons above T., quarks & gluons below above T,

“Complete” QGP: <loop> near one. Usual “perturbative” regime (resummed)

| |
< Hadronic—<— semi”-QGP %eComplete QGP—

] sy s 1

@) 1




S. Is the QCD coupling big at T.?

Perturbative computations at T # 0

“Helsinki” resummation




QCD pressure 1n perturbation theory, T # 0

At high T, computing straightforwardly in perturbation theory in g
P(T) = pidear (14 c2 97 + e (67)*/ + 1 (%) log(d/g%) + ...

Why (non-analytical) terms, ~ Vg2? At high T, QGP = plasma of colored
electric charges. Screen static electric fields, through a Debye “mass™:

mQDebye — HOO(pO :ﬁ: O) — (NC _I_Nf/2) 92T2/3

Consider pressure from the Debye modes (static Ao):

poetye ~ T [ dptrlog (57 +miy) ~ Ty ~ ()7 T

At (g?)?, log(T/mp) ~ log(1/g?). Continue to ~ (g?)’, when static magnetic modes
contribute, mmag~ g> T. Their contribution cannot be determined perturbatively,
but can be determined through Lattice simulations.




Naive perturbation theory fails badly

At T=0, natural expansion parameter is as = g/4n. Works well down to
as ~ 0.3, about 1 GeV. Because of the non-analytic terms, fails badly for the
pressure even at such (moderate) values:

Andersen &
Strickland,
hep-ph/0404164




“Helsink1” program of resummation

Match original theory in 4D, to effective theory in 3D, forr > 1/T

1
L — 5 trG?j + tr |D;Aol” + m2 tr A2 + wktr Al

Mpebye? ~ 2212, Kk~ g*, series in g2 .
First step in three: then resum mpebye , then Mmagnetic

Optimal resummation of perturbation theory for small Ag

Braaten & Nieto, hep-ph/9501375: Euclidean “energies” po ~ 27T,

So natural scale for as = g?/4m to “run” is os(2nT). Big factor!
T. ~ 175 MeV: ocfi(T.) ~ non-perturbative.

o271 Te) ~ ascti(1.1 GeV) ~ moderate coupling.




Perhaps o 1s not so big at T¢

Laine & Schroder, hep-ph/0503061 & 0603048
From two loop calculation, matching original to effective theory:
find factor of 2 ;t => 7. for pure gauge, 2 t=> 9. for Nf = 3.

Te ~ Ams ~ 200 MeV. So af(T) ~ aff(2 1 T) ~ 0.3 at Te: not so big

Grey band uncertainty from changing scale by factor 2.
0.40 — . —_

Oéiff (T> T 0.30
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Effective 3D theory works for spatial string tension

Laine & Schroder, hep-ph/0503061 M. Cheng et al, 0806.3264
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Use g3D2(T) =47 ocS(T) T, take Ospatial/ g3D2 from 3D lattice sim.’s
Compare with direct calc. of Ogpatial in 4D.

Works down to TC! Need 2-loop calc. Magnetic sector OK to T¢




Resummation fails for pressure below 3 T

Resummation: includes perturbative computation to four loop order, ~ (g2)3.
Match non-perturbative contribution from static magnetic sector (lattice).

Even so, fails very badly below 3 T.:

decrease 1n pressure near T due to non-perturbative effects

2.0| I T T TTTI I T T TTTI I T T TTTI

1< Effective field theory

p/T4/|\ 1.5
. [<-lattice
1o

(@F =
N : Stefan-Boltzmann law
. O(g'In=) + fitted O(g")

— full EQCD + fitted O(")
= 4 lattice data

Hietanen, Kajantie,
Laine, Rummukainen,
Schroder, 0811.4664

w0/ Te—



6. ‘t Hooft basis of SU(N)

Drawing “birdtrack™ diagrams,

or group theory made easy




Peculiar basis for two colors

Start with the usual Cartan basis.

0 1 0 0 1/1 0
— 412 . = 421, 3_ 4
“‘(o 0)_t "’_(1 o)‘t "’_2(0—1

Now add one extra diagonal generator, — 03, in addition to 6. Why?
Off-diagonal gen.’s: t!? and t?! labels the row and column of one nonzero element.
Can one do the same for the diagonal generator(s)? More or less...:

1 1 0 411 3 0 0 1 I 0 _ 422
_5(0 1)"5 ""‘(0 1)_5(0 1)‘75

tr(t™*h) =15 tr(t2) = () = ... =0

Usual relations for
off-diagonal generators:

. 1 1
But not for the diagonal tr(t11)2 _ tr(t22)2 — - tr(t11t22) -
generators:

Basis 1s not an orthonormal, since we added one extra generator.




“ ‘t Hooft” basis for SU(N)

Off diagonal generators same as Cartan basis. One diagonal generator same:

L 1IN 0 _( On—1 O —il
N 0 N—-1 ] 0 1 NN

Unlike Cartan, construct N diagonal generators by permutations of diagonal
element above:

L (N-1 0 (1
N 0 —1n_1

. 1 —1 0 0
0 0 —1n_9o

For N=2, t22 = — ¢3. Now have N diagonal generators, t!!, t22. tNN: one extra.
Advantage over Cartan: no preferred direction in group space.

Disadvantage: diagonal generators are not orthonormal.

(Off-diagonal generators satisfy usual orthonormality relations.)




Birdtrack diagrams for the ‘t Hooft basis

Let a,b,c,d... = 1...N represent indices for fundamental representation.
Denote adjoint indices by a pair (ab): N2 of these!
Then the generators can be represented simply by a “birdtrack™ diagram:

ab ab
1

(190) g = 6060 — — 6% 6. AL _ -
N C d N ¢ d

First term 1s the single element of a matrix. The second term is the identity matrix
What is useful is that the generators are obviously projectors. Thus the product
of two generators 1s again a projector:

tr(t?t) = (%) 4. tr(t®® " =1, a#b

1
- tr(t20 ) = 0@ # b

Raise and lower indices by flipping order; automatic with directed lines.
Normalization of the diagonal generators just reflects a projector.




Group 1dentities from birdtracks
(tab)eg (th)gf -

(b L2 ) (L

= 4t At

Just by drawing arrows, can show the
standard relation:




Birdtrack structure constants

flabiedse) A B} A
Jabiedsef) )/\K . A

Can derive arbitrary
group 1dentities just
by doodling.

P. Cvitanovic,
http://www.birdtracks.edu

Arbitrary group
representations follow
similarly, for any group.

N.B.: extracting SU(N)
structure constants from
U(N).

Useful in a practical
sense.




