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four dimensions
first order transitions from negative coupling
fluctuation induced transitions

2. Chiral phase transition

3. Deconfining phase transition: (bare) Polyakov loop

4. Possible phase transitions: 
deconfinement versus chiral symmetry restoration:
many possible scenarios!

5. Is the QCD coupling big at Tc?    
Perturbative computations at T ≠ 0
“Helsinki” resummation

6. ‘t Hooft basis for SU(N): “birdtrack” diagrams



1. Phase transitions in mean field theory, and not
four dimensions

first order transitions from negative coupling
fluctuation induced transitions



Mean field theory: phase transitions at T = 0
Consider scalar field φ invariant under global Z(2) symmetry, φ → −φ:

In four dimensions, most general renormalizeable Lagrangian.
For stability at large φ,  λ > 0.  
Only phase transition possible is m2 → 0

L =
1
2
(∂µφ)2 +

1
2
m2φ2 + λφ4

m2 = 0 m2 < 0

In four dim.’s, only a second order transition is possible.
Mean field theory works, up to logarithmic corrections:
λ is dimensionless, “runs” log.’y in 4D.



First order phase transition at T = 0
Now drop the global Z(2) symmetry, so all powers of φ are allowed:

The linear term, ~ h, is like a background field, so < φ > is always ≠ 0
Because of the cubic term, cannot “zero” the potential:

m2 = 0 m2 < 0

L =
1
2
(∂µφ)2 + h φ +

1
2

m2 φ2 + κ φ3 + λ φ4

With no “flat” potential, always have barrier between degenerate, but distinct,
vacua.  Masses, etc, are different in two vacua, so:
cubic invariants generate first order transitions



First order phase transitions at T ≠ 0
Imaginary time τ: 1 → 1/T.  So theory 3-dimensional for distances >> 1/T.
Again, take global Z(2) symmetry, φ → −φ:

Renormalizability => φ6 : ξ dimensionless, λ ~ mass.
Stability => ξ > 0, so λ can have either sign.

First order transition from negative quartic coupling.

General phase diagram in plane of m2 and λ: 

m2 = 0, λ > 0 : second order transitions
m2 > 0, λ > 0 : first order transitions
m2 = λ = 0 : “tri-”critical point.

Tri-critical point: mean field + logarithmic corrections
Critical point very difficult: power law corrections to mean field theory!

λ↑

L =
1
2
(∂µφ)2 +

1
2

m2 φ2 + λ φ4 + ξ φ6

m2→

<= 2nd order line

1st order 
         line =>

Xtri-critical point



Renormalization group in 4 - ε dimensions
Consider theory with Z(2) symmetry, interaction ~ λ φ4

Wilson-Fischer ’72:  in 4 - ε dimensions, λ has dimensions of (mass)ε.  
Construct β-function for the “running” of the coupling:

β(λ) =
∂λ

∂µ
= −ε λ + # λ2 + . . .

First term from mass dimension of λ.
Second term from one loop diagram, 
and positive: λ → 0 in infrared limit.
Why? Euclidean action exp( − λ φ4), (−)2 = +
For small ε, power law behavior of 
critical point calculable.

λ→



Renormalization group: two couplings
Now consider a theory with O(4) x O(2) symmetry:
φi =  complex valued field with four components.  
There are two possible couplings, first O(8) invariant, second just O(4) x O(2):

L =
1
2

|∂µ
"φ|2 +

1
2

m2 |"φ|2 + λ1 ("φ∗ · "φ)2 + λ2 ("φ∗ · "φ∗)("φ · "φ)

β-functions:

Yawn.  All signs positive, as according to previous argument.
But now couplings run to negative values!
“Fluctuation induced” first order transition = Coleman-Weinberg phenomenon.

β(λ1) = −ε λ1 + 16λ2
1 + 14λ1 λ2 + 3λ2

2

β(λ2) = −ε λ2 + 12λ1 λ2 + 10λ2
2



X X

Running couplings: 2nd order vs fluc. ind’d 1st order

O(-2) x O(-2): IR stable fixed point,
2nd order transition

O(4) x O(2): IR unstable fixed point,
fluctuation induced first order

λ2↑
λ2↑

λ1→
λ1→



2. Chiral phase transition



Chiral Symmetries of Massless Quarks
For quarks in QCD:

Lquark = ψ
a

/D ψa + m ψ
a
ψa

= ψ
a
L /D ψa

L + ψ
a
R /D ψa

R + m (ψ
a
Lψa

R + ψ
a
Rψa

L)

where                                    ,                                        .  Thus massless quarks are 
invariant under a global symmetry,

/D = γµ(∂µ − igAµ) ψL,R = (1± γ5)ψ/
√

2

ψa
L,R → Uab

L,R eiθγ5ψb
L,R

Because of quantum mechanical effects: the axial anomaly, and instantons, the
axial U(1) symmetry is only Z(Nf):

which is a classical symmetry of Gcl
f = SUL(Nf )× SUR(Nf )× UA(1)

Linst. = εa1a2...aNf ψ
a1
L ψa1

R . . .ψ
aNf

L ψ
aNf

R

Thus the quantum symmetry is
Gqu

f = SUL(Nf )× SUR(Nf )× Z(Nf )

This becomes                             when all quark masses are equal.Gf = SUV (Nf )



Evaporation of Chiral Symmetry

Lint = λ1(tr Φ†Φ)2 + λ2 tr(Φ†Φ)2 + cinst det Φ

Φ→ eiα U†
L Φ UR

Assume chiral symmetry broken at T=0, restored at Tchiral :
Construct 
where

The invariant (interaction) Lagrangian is

Φab = ψ
a
L ψb

R

det Φ ∼ ΦNf For three flavors, IF cinst is nonzero at Tchiral, first order trans.!

What if instantons evaporate before Tchiral ? cinst (Tchiral) <<  cinst (0)?

Calculation in 4 - ε dim.’s shows: RDP & Stein, ’81; RDP & Wilczek ‘84
      fluctuation induced first order transition for Nf = √2 + O(ε).  

QCD: for two flavors, chiral transition either first or second order.
Three or more flavors: first order.  IF one can ignore deconfinement!
N.B.: quark (~ pion) masses weaken any 1st order trans.

Tchiral

T→

〈ψLψR〉



Effective theory for two flavors
For two flavors, can rewrite SUL(2) x SUR(2) ~ O(4):

Similarly, axial U(1) ~ O(2).

Effective theory, including instanton interaction, is

L = |∂µφ|2 + 1
2 m2 |#φ|2 + cinst( #φ∗2

+ #φ2)

+λ1 (#φ∗ · #φ)2 + λ2 (#φ∗ · #φ∗)(#φ · #φ)

Φ =
(

φ0 + φ3 φ1 − iφ2

φ1 + iφ2 φ0 − φ3

)

For real φ, chiral symmetry breaking by m2 < 0: massive σ plus massless π’s.

With complex φ, when cinst nonzero, also have massive η plus three massive f’s.



3. Deconfining phase transition



Hidden Z(N) symmetry in SU(N)
Start with SU(N) gauge theory without quarks.  
Work in imaginary time, τ: 0 -> 1/T.  Bosons periodic, fermions anti-periodic.
‘t Hooft: “hidden” global symmetry: consider gauge transf.

tNN: σ3 for two colors, λ8 for three colors.
Independent of x, so global.  Further, 
at τ =1/T pure phase, proportional to unit matrix! 

Ω(1/T ) = e2πi/N 1N

Aµ →
1
−ig

Ω†Dµ Ω ; ψ → Ω ψ
Under a gauge transformation, 
this Ω ok for gluons, not for quarks:

The Z(N) is related to the center of SU(N) (commute with all group elements).
Symmetry non-local in τ.  How to probe it?

Z(N) symmetry could be completely washed out by quarks.  Dynamical question.

Ω(τ) = e2πiτT tNN

, tNN =
1
N

(
1N−1 0

0 −(N − 1)

)



Z(N) symmetry and Polyakov loops

Wilson loop that wraps all the way around in τ = Polyakov(-Susskind) loop:

Not invariant under all gauge transf.’s: !→ e2πi/N !

Use Polyakov loops to test response to Z(N) charge.
Loop like propagator of infinitely massive test quark.

Confinement => <loop> = 0 at low temperature.
Deconfinement => <loop> ≠ 0 at high temp. 
above Tdeconf .  Opposite to chiral symmetry.

Classify transitions by change in <loop>.   
Quarks act like background Z(N) field.
Assume overall normalization of loop physical. 

T→
<loop>↑

Tdeconf

1→

!(x) =
1
N

tr P exp(ig
∫ 1/T

0
A0(x, τ) dτ)



Z(N) symmetry and deconfinement

Classification of possible deconfining phase transition: 
construct Z(N) invariant theory,

L = |∂µ"|2 + m2|"|2 + λ(|"|2)2 + κ("N + ("∗)N )

Blue terms inv. under U(1); red terms, under Z(N).

For N=2: symmetry Z(2) = Ising.  Can be second order.

N=3 (QCD!): cubic invariant, so always first order.

N ≥ 4: last term marginal or irrelevant: can be either first or second order.

Svetitsky & Yaffe, ‘82

Lattice: deconfining transition second order for N=2, 
             first order for N ≥ 3.

!→ e2πi/N !
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 Lattice: SU(3) glue, with quarks 
Cheng et al, 0719.0354: e = energy density, p = pressure. Nt = # time steps: 4, 6.
Three flavors of dynamical quarks: close to QCD.
Crossover, no true phase transition.  (Ideal gas: e = 3p)

T→
Tc↑

e/T4

← 3p/T4



 Lattice: SU(3) glue, no quarks: weakly 1st order 
More sensitive than pressure: (e-3p)/T4, e = energy density, p = pressure
Bielefeld, hep-lat/9602007.  Nt = # time steps: 6, 8 near continuum limit?
Pressure: sum of ideal gas, T4, plus T2 , then “MIT bag constant”,  T0.

←(Ls)3 x Nt: 

Ls = # spatial lattice spacings

Nt = # time steps

Tc↑ 4 Tc↑

e − 3p

T 4
↑

<-1.1 Tc

T/Tc→

p(T ) ∼ #
(

T 4
− #′ T 2 + . . .

)

←

1

T 2
:
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N=3, 203x5
N=3, 323x6, Boyd et al.
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Lattice, no quarks: SU(3) close to SU(∞)?
Bringoltz & Teper, hep-lat/0506034 & 0508021: 
SU(N), no quarks, N= 3, 4, 6, 8, 10, 12.  
Deconfining transition first order, latent heat ~ N2.
Hagedorn temperature TH ~ 1.116(9) Tc for N = ∞ 

e − 3p

N2 T 4
∼ const.

e − 3p

N2 T 4
↑

T/Tc→
Tc↑



4. Possible phase transitions:
deconfinement versus 

chiral symmetry restoration:
many possible scenarios!



T→

1.→
〈!〉 ↑

hadronic
QGP

〈ψψ〉 ↑

Lattice: case in all simulations to date, for quarks in fundamental representation.
But: perhaps not generic?

One transition
Deconfining and chiral transitions coincide: 
go from confined phase with χSB’g to chirally symmetric Quark-Gluon Plasma.
Natural if transition strongly first order.  Otherwise, not obvious.

Td = Tχ ↑

← 1.



Cheng et al, 0719.0354: chiral order parameter, (renormalized) < loop >
No true phase transition, only crossover.  But:
Within errors, two transitions ~ coincide (Tc from peak in susceptibilities)

Lattice, ~ QCD: one transition
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Cheng et al, 0719.0354: (renormalized) Polykaov loop, chiral order parameter
No true phase transition, only crossover.  But:
Within errors, two transitions ~ coincide (Tc from peak in susceptibilities)

Lattice, ~ QCD: one transition

T→

← 1.

Tc ↑



Adjoint quarks: two transitions, Tχ > Td

Color adjoint “quarks”: χ sym of 4 Majorana flavors SU(4)->SO(4); O(3) fixed pt
Exact Z(3) and chiral sym.’s: 1st order trans. at Td, 2nd order chiral at Tχ.
But Tχ ~ 8 Td!  Due to larger Casimir, and so coupling, of adjoint quarks

〈ψψ〉 →

↓ 〈loop〉 ↓ 〈ψψ〉
↑ Td Tχ ↑

← 〈loop〉
Karsch and Lutgemeir, 
      hep-lat/9812023
Basile, Pelisetto, & Vicari,

   hep-th/0412026 
DeGrand, Shamir & Svetitsky, 
      0812.1427

T→

← 1.



T→

Many flavors: one chiral transition?
Consider SU(3) color with many (light) quarks: strong background field for Z(3)
< loop > increases from zero, always “large”.
At best chiral transition, of first order.  Drags change in < loop > along with it.
Not dominated by deconfinement, but by chiral sym.
Appelquist, Fleming, Neil 0901.3766: eight flavors not conformally invariant

Tχ ↑

← 1.

↓ 〈ψψ〉

← 〈loop〉

← 〈loop〉

〈ψψ〉 →



“Quarkyonic” matter: Td > Tχ 
Consider SU(N) color for N →∞, Nf fixed, at nonzero density.
Possible to have a chirally symmetric, but confined phase: “quarkyonic”
Manifest in Skyrme crystal.  Below for 3 colors?
McLerran & RDP, 0706.2191; McLerran, RDP, & Hidaka, 0803.0279
N.B. Anomaly constraints important, RDP, Tytgat, & Trueman hep-ph/9702362

Tχ ↑ ↑ Td

〈ψψ〉 →

↓ 〈ψψ〉

← 〈loop〉

↓ 〈loop〉
↓ 〈loop〉



N = 4 SU(∞)
AdS/CFT: Can define <loop> = 1 at T = 0 (Polyakov-Maldacena, + scalars)

At T ≠ 0 , <loop> = constant (like pressure/T4) : value, vs g2 N?  
N = 4 SU(∞) is always deconfined.
Hartnoll & Kumar, hep-th/0610103: also consider <scalar>’s

×

〈!〉 ↑

1.→

T→



Punchline: QCD & the “semi”-QGP
Three regimes:  hadronic, <loop> ~ 0.  

“Semi”-QGP: <loop> ≠ 0, < one. With quarks, both below & above Tc.
Hadrons above Tc, quarks & gluons below above Tc

“Complete” QGP: <loop> near one.  Usual “perturbative” regime (resummed)

〈!〉 ↑

1.→
←“Tc”

T→

←Hadronic→←     “semi”-QGP     →←Complete QGP→   



5. Is the QCD coupling big at Tc?
Perturbative computations at T ≠ 0
“Helsinki” resummation



QCD pressure in perturbation theory, T ≠ 0
At high T, computing straightforwardly in perturbation theory in g2:

Why (non-analytical) terms, ~ √g2?  At high T, QGP = plasma of colored
electric charges.  Screen static electric fields, through a Debye “mass”:

p(T ) = pideal

(
1 + c2 g2 + c3 (g2)3/2 + c4 (g2)2 log(d/g2) + . . .

)

Consider pressure from the Debye modes (static A0):

pDebye ∼ T

∫
d3!p tr log

(
!p 2 + m2

D

)
∼ T m3

D ∼ (g2)3/2 T 4

m2
Debye = Π00(p0 = !p = 0) = (Nc + Nf/2) g2 T 2/3

At (g2)2, log(T/mD) ~ log(1/g2).  Continue to ~ (g2)3, when static magnetic modes
contribute, mmag~ g2 T.  Their contribution cannot be determined perturbatively,
but can be determined through Lattice simulations.



Andersen &
Strickland,
hep-ph/0404164

p
pideal

↑

Naive perturbation theory fails badly
At T=0, natural expansion parameter is αs = g2/4π.   Works well down to
αs ~ 0.3, about 1 GeV.  Because of the non-analytic terms, fails badly for the 
pressure even at such (moderate) values:

↑ αs ∼ 0.3

g(2πT )→



“Helsinki” program of resummation

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

mDebye2 ~ g2 T2 ,  κ ~ g4,  series in g2 .   
        First step in three: then resum mDebye , then mmagnetic 

Optimal resummation of perturbation theory for small A0 

Braaten & Nieto, hep-ph/9501375: Euclidean “energies” p0 ~ 2πT.  

So natural scale for αs = g2/4π to “run” is αs(2πT).  Big factor!  

Tc ~ 175 MeV:  αseff(Tc) ~ non-perturbative.
 
                          αseff(2π Tc) ~ αseff(1.1 GeV) ~ moderate coupling.

Match original theory in 4D, to effective theory in 3D, for r > 1/T
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 Perhaps αs is not so big at Tc

Laine & Schröder, hep-ph/0503061 & 0603048
From two loop calculation, matching original to effective theory: 

find factor of 2 π => 7. for pure gauge, 2 π => 9. for Nf = 3.

Tc ~ ΛMS ~ 200 MeV.  So αseff(T) ~ αseff(2 π T) ~ 0.3 at  Tc: not so big
Grey band uncertainty from changing scale by factor 2.

α
eff
s

(T ) ↑

T/Λ
MS

→

α
eff
s

(Tc) ≈ 0.3



Effective 3D theory works for spatial string tension

Use g3D
2(T) = 4 π αs(T) T, take σspatial/g3D

2 from 3D lattice sim.’s

Compare with direct calc. of σspatial in 4D.
Works down to Tc! Need 2-loop calc. Magnetic sector OK to Tc      

1.0 2.0 3.0 4.0 5.0
T / T

c

0.6

0.8

1.0

1.2

T
/!

s1
/2

4d lattice, N
"

 1
 = 8 

T
c
 / #

MS
 = 1.10...1.35_

2-loop

1-loop

T/Tc →

Tc↑ 5 Tc↑
 0.4

 0.5

 0.6

 0.7

 0.8

 5 4.5 4 3.5 3 2.5 2 1.5 1

 1

T/T0

r0 T

T/!s
1/2

(T)

20.5

N"=4
N"=6
N"=8

T/Tc →

5 Tc↑
↑Tc

T
√

σs
↑

Laine & Schröder, hep-ph/0503061 
     

M. Cheng et al, 0806.3264



100 101 102 103

T / Tc

0.0

0.5

1.0

1.5

2.0

p 
/ T

4

Stefan-Boltzmann law
O(g6ln 1-)g   + fitted O(g6)

full EQCD + fitted O(g6)
4d lattice data

Hietanen, Kajantie,
Laine, Rummukainen,
Schroder, 0811.4664

T/Tc→

p/T4↑
←lattice

← Effective field theory↓

Resummation fails for pressure below 3 Tc

Resummation: includes perturbative computation to four loop order, ~ (g2)3.
Match non-perturbative contribution from static magnetic sector (lattice).
Even so, fails very badly below 3 Tc: 
decrease in pressure near Tc due to non-perturbative effects

Tc ↑



6. ‘t Hooft basis of SU(N)
Drawing “birdtrack” diagrams,

or group theory made easy



Peculiar basis for two colors
Start with the usual Cartan basis.  

Now add one extra diagonal generator, − σ3, in addition to σ3.  Why?
Off-diagonal gen.’s: t12 and t21 labels the row and column of one nonzero element.
Can one do the same for the diagonal generator(s)?  More or less...:

σ+ =
(

0 1
0 0

)
= t12 ; σ− =

(
0 0
1 0

)
= t21 ; σ3 =

1
2

(
1 0
0 −1

)

σ3 =
(

1 0
0 0

)
− 1

2

(
1 0
0 1

)
= t11 ; −σ3 =

(
0 0
0 1

)
− 1

2

(
1 0
0 1

)
= t22

Usual relations for 
off-diagonal generators:

But not for the diagonal
generators:

Basis is not an orthonormal, since we added one extra generator.

tr(t12t21) = 1 ; tr(t12t11) = tr(t21t11) = . . . = 0

tr(t11)2 = tr(t22)2 =
1
2

; tr(t11t22) = −1
2



“ ‘t Hooft” basis for SU(N)
Off diagonal generators same as Cartan basis.  One diagonal generator same:

tNN =
1
N

(
−1N−1 0

0 N − 1

)
=

(
0N−1 0

0 1

)
− 1

N
1N

Unlike Cartan, construct N diagonal generators by permutations of diagonal 
element above:

t11 =
1
N

(
N − 1 0

0 −1N−1

)
=

(
1 0
0 0N−1

)
− 1

N
1N

t22 =
1
N




−1 0 0
0 N − 1 0
0 0 −1N−2



 =




0 0 0
0 1 0
0 0 0N−2



− 1
N

1N

For N=2, t22 = − σ3.  Now have N diagonal generators, t11, t22...tNN: one extra.
Advantage over Cartan: no preferred direction in group space.
Disadvantage: diagonal generators are not orthonormal.  
(Off-diagonal generators satisfy usual orthonormality relations.)



Birdtrack diagrams for the ‘t Hooft basis

(tab)cd = δa
c δb

d −
1
N

δab δcd

Let a,b,c,d... = 1...N represent indices for fundamental representation.  
Denote adjoint indices by a pair (ab): N2 of these!
Then the generators can be represented simply by a “birdtrack” diagram:

−

1

N

ba

dc

ba

dc
First term is the single element of a matrix.  The second term is the identity matrix
What is useful is that the generators are obviously projectors.  Thus the product
of two generators is again a projector: 

tr(taa)2 = 1− 1
N

; tr(taa tbb) = − 1
N

, a "= b

Raise and lower indices by flipping order; automatic with directed lines.
Normalization of the diagonal generators just reflects a projector.

tr(tabtcd) = (tab)dc : tr(tab tba) = 1 , a != b



(( ) )
−

1

N
−

1

N

−

1

N

+
1

N2

( )+

=

Group identities from birdtracks
(tab)eg (tcd)gf =

N∑

a,b=1

(tab tba)cd =
N2 − 1

N
δcd

Just by drawing arrows, can show the
standard relation:



Birdtrack structure constants

−

+ + )(

+

−

2

N

+
4

N2

f (ab;cd;ef) :

d(ab;cd;ef) :

Can derive arbitrary
group identities just
by doodling.

P. Cvitanovic,
http://www.birdtracks.edu

Arbitrary group 
representations follow
similarly, for any group.

N.B.: extracting SU(N)
structure constants from
U(N).

Useful in a practical 
sense.


