
Technicalities of the QCD phase diagram: T ≠ 0, μ = 0
1. Z(N) interface tension for pure SU(N)

2. Deconfinement at zero coupling: SU(∞) on a small sphere 
(Sundborg ‘99, Aharony et al ’03, ‘05)

3. Renormalization of Polyakov loops
         Representation(s); zero point energy of ren.’d loops

One point vs. two point renormalization

4. Lattice data on renormalized loops
         Bare loops, adjoint loops, Casimir scaling

5. Goal: complete effective theory near Tc

6. Effective theory in Euclidean spacetime

7. Effective theory in Minkowski spacetime
          Hard Thermal Loops, shear viscosity



1. Z(N) interface tension (‘t Hooft loop) for pure SU(N)



Z(N) interface: boundary conditions
In pure SU(N) (no quarks), consider a box which is long in one (spatial) direction, 
and which differ by a Z(N) rotation at the two ends:

〈L〉 = 1

〈L〉 = e
2πi/N

1

z

Each end represents an allowed vacuum.  Since they differ, an interface forms 
between the two ends.  Look for a solution which tunnels between the two vacua:

With                               , the boundary conditions are that
q(0) = 0 at one end of the box, and q(L) = 1 at the other end.

L = P eig
R

A0 dτ

Acl
0 (z) =

2πT

g
q(z) tNN , tNN =

1
N

(
1N−1 0

0 −(N − 1)

)



Z(N) interface: classically

Scl(Acl) =
∫

d4x
1
2
tr(Gµν)2 = Vtr

4π2T 2

g2N
(N − 1)

∫
dz

(
dq

dz

)2

But then the equation of motion is trivial, 

With this ansatz, the classical action only receives a contribution from the 
electric field:

d2q

dz2
= 0

As is the solution for the interface: q(z) =
z

L

The action is ∫ dz (dq/dz)2 ~ L (1/L)^2 ~ 1/L: the action vanishes as L → ∞.
There is really no interface, the theory smoothly rolls from one vacuum to 
another.  This is possible classically, where any q is valid.  This degeneracy is
lifted by quantum mechanical effects.



Z(N) interface: quantum effects
Thus compute the one loop action, in the presence of this background field.
Only the ladder generators for tNN, taN and tNa, feel the background field.

Ladder generators obey [tNN, taN] ~ taN, so reduces to an Abelian problem

Background field just shifts the “energy” from an integer (n) * 2 π T, to a
fractional number, (n+q), * 2 π T.  Something like fractional statistics...

Squ(Acl) = 2 (N − 1) tr log
(
(p+

0 )2 + !p 2
)

The N-1 is from the number of ladder generators tjN.  This is independent of
the gauge fixing parameter.  Now treat “q” as constant.  Then this is easy!

∂Squ

∂q
= 4(N − 1)(2πT ) tr

(
p+
0

(p+
0 )2 + #p 2

)

Justify, after the fact, why ok to take constant “q”.

Dcl
0 taN = (∂0 − ig[Acl

0 , ]) taN = i(2πT )(n + q) taN



Z(N) interface: quantum effects, cont.’d
Do the integral by integrating over spatial momenta first, then summing over “n” 
for p0: 

Vtr L T
+∞∑

n=−∞

∫
d3p

(2π)3

(
p+
0

(p+
0 )2 + "p 2

)
= −VtrLπT 3

+∞∑

n=−∞
(n + q)|n + q|

tr
(

p+
0

(p+
0 )2 + !p 2

)
= −VtrL πT 3 (ζ(−2, q)− ζ(−2, 1− q))

ζ(r, q) =
∞∑

n=0

1
(n + q)r

; ζ(−2, q) = − 1
12

d

dq

(
q2(1− q)2

)

Squ(Acl) = Vtr
4πT 4

3
(N − 1)

∫
dz q2(1− q)2

The sum over “n” is a type of zeta-function:

Putting all the constants together, we obtain a quantum potential for “q”:

This is valid for 0 < q < 1, and periodic outside of that domain.  
Only the Z(N) vacua, q = 0 and 1, are minima of the potential.  



Z(N) interface at leading order
Notice the classical action is ~ 1/g2, while the one loop term is ~ 1.
Thus if we introduce a rescaled coordinate,
then the sum of the classical and one loop actions is

It is now easy solving for the interface!  By the boundary conditions, the 
“energy” of the solution,                                                vanishes.  Thus one doesn’t
even need the explicit solution to find the action:

The interface tension is the coefficient of the transverse volume, Vtr T:

z̃ =
√

N/3 gT z

Scl + Squ = Vtr
4π2(N − 1)√

3N

T 3

√
g2

∫
dz̃

((
dq

dz̃

)2

+ q2(1− q)2
)

∫
dz̃

((
dq

dz̃

)2

+ q2(1− q)2
)

= 2
∫ 1

0
dq q(1− q) =

1
3

E = (dq/dz̃)2 − q2(1− q)2

σ̃ =
4π2(N − 1)

3
√

3N

T 3

√
g2



Z(N) interfaces, with quarks

Bhattacharya, Gocksch, Korthals-Altes & RDP, hep-ph/9205231
Z(N) interface as ‘t Hooft loop: Korthals-Altes, Kovner & Stephanov, hep-ph/9909516
Corrections ~ g3: Giovannangeli & Korthals-Altes hep-ph/0412322
                    ~ g4:  Korthals-Altes, Laine, Romatschke 09...
SUSY interfaces: Armoni, Kumar, & Ridgeway 0812.0773, Korthals-Altes 09...

Why constant A0 ok?  In terms of                              , interface width is ~1.  So
in terms of z, it is large (for small g), ~ 1/g.
With “fat” interface, can systematically expand about constant A0.  
Without quarks, Z(N) interface equivalent to a (spatial) ‘t Hooft loop: 

area behavior in deconfined phase (converse to Wilson loop).
With quarks, Z(N) degeneracy lifted.  For N=3:

z̃ =
√

N/3 gT z

V(A0)↑
q→0 1 2 3
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Lattice: Z(N) interfaces = ‘t Hooft loop
Can enforce Z(N) interface by boundary conditions, and so measurable on
lattice.  Find semi-classical result works well to ~ 10 Tc, see below 

For N ≥ 4, also interface tension for kth interface: tunneling
Satisfies semi-classical relation,
right down to Tc:
Bursa & Teper, hep-lat/0505025

←de Forcrand & Noth, 
hep-lat/0506005.  

L : 1→ e2πik/N 1

σ̃k =
k(N − k)

N − 1
σ̃1

T/ΛMS →

σ̃lattice

σ̃semi−class.
↑

1.0→

0.9→



2. Deconfinement at zero coupling:
         SU(∞) on a small sphere 



SU(∞) on a small sphere: Hagedorn temperature
Sundborg, hep-th/9908001
AMMPV: Aharony, Marsano, Minwalla, Papadodimas, & Van Raamsdonk,
                                                                                                   hep-th/0310285 & 0502149 

Consider SU(N) on a very small sphere: radius R, with g2(R) << 1.
(Sphere because constant modes simple, spherically symmetric)

At N = ∞, can have a phase transition even in a finite volume.  

When g2 = 0: by counting gauge singlets, find a Hagedorn temperature, TH :

ρ(E) ∼ exp(E/TH) , E → ∞

At N = ∞,  Hagedorn temperature is precisely defined. When g2 = 0,

TH =
1

log(2 +
√

3)

1

R
, g2 = 0.



SU(∞) on a small sphere: effective theory
Construct effective theory for low energy (constant) modes, 

by integrating out high energy modes, with momenta ~ 1/R:

Consider (thermal) Wilson line:

L is gauge dependent matrix, 

Traces of L are gauge invariant, 

!j =
1

N
tr L

j , j = 1 . . . (N − 1)

Effective theory for lj: compute free energy in constant background A0 field:
Q = diagonal matrix.  Calc’s like Z(N) interface,
but for arbitrary background.  

L → Ω(1/T )† L Ω(0)

L = P exp

(

ig

∫ 1/T

0

A0 dτ

)

A0 =

T

g
Q , L = e

iQ



SU(∞) on a small sphere & the Polyakov loop
When g2 = 0:

At the Hagedorn temperature, TH , only the first mode, l1, is unstable; 
      all other modes are stable.  Concentrate on that mode, l ≡ l1.
Vandermonde determinant in measure for constant mode gives “Vdm potential”:
(N.B.: special to small volume; measure terms regularization dependent in
infinite volume)

Veff = N
2
(

m
2

!
2
1 + VVdm + . . .

)

; m
2
∼ T

2
H − T

2

VVdm = −
1

2
log (2 (1 − !)) +

1

4
, ! ≥

1

2

VVdm = + !2 , ! <
1

2

Vdm potential has discontinuity of third order at l = 1/2.
Gross & Witten ’81; Kogut, Snow & Stone ’82.... Sundborg, ’99....AMMPV ’03 & ‘05
Dumitru, Hatta, Lenaghan, Orginos & RDP, hep-th/0311223 = DHLOP.
Dumitru, Lenaghan & RDP, hep-ph/0410294 = DLP.



Deconfinement on a small sphere

Deconfining phase transition when m2 = 0: first order, <loop> = 1/2 at Tc = TH.
Obvious from potentials above and below Tc:
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Gross-Witten point

At transition, order parameter <loop> jumps from 0 to 1/2.  Latent heat nonzero.
DLP: masses vanish, asymmetrically: “critical” 1st order transition: “GW point”.
At m2 = 0, <loop> jumps because of 3rd order discontinuity in Vdm potential
GW point like tricritical point in extended phase diagram.
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  Away from the GW point
Add negative quartic coupling:

V/N2 = m2|!|2 − (|!|2)2

Typical strongly 1st order transition: masses nonzero at transition (below)
New minimum ≠ 1/2.  So 3rd order discontinuity at 1/2 is no big deal.
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GW = “ultra”-critical point 

Phase diagram: tri-critical => Gross-Witten point.

Away from GW point, 

 ordinary 1st or 2nd order transitions.

Only at GW point:

Nonzero latent heat, jump in order parameter 
and masses vanish

“Ultra”-critical as infinite # couplings vanish
Non-analytic behavior only possible at N = ∞

AMMPR ‘03, DLP

Veff/N2 = m̃2|!|2 + κ4(|!|
2)2 + κ6(|!|

2)3 + . . . ! < 1/2

<= 2nd order line

1st order line =>

X m̃2 →
Gross-Witten point

κ4 ↑



1→

T→
Tc↑

〈!〉 ↑ 1/2→

←  Confined   →←    semi-QGP →←Complete QGP→   
Semi-QGP on a small sphere

Veff = Veff (g2 = 0) − c3 g4
(

!2
)2

c3 > 0.

c3 > 0 ⇒  Tc = TH - O(g4).  Deconfinement first order, below TH 

Boundary between complete & semi-QGP not precise; <loop>  → 1 by T ~ # Tc?  

AMMPV ‘05: calculate free energy with Q ≠ 0 to two loop order at small R



Finite N:  Vandermonde potential
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Infinite N: discontinuity of 3rd order at 1/2.  Continuous at finite N. 
Numerically, N=2 and 3 close to infinite N. DLP ‘04



Lattice: N = 3 close to GW point
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3. Renormalized loops
          Representation(s)

Lattice: bare loops
Renormalization of Wilson loops
Zero point energy of ren’d Wilson loops

 



Representations of Polyakov loops
Wilson lines, and so Polyakov loops, are classified by irreducible representations.
Birdtracks for the simplest representations are:

+

Fundamental
dim. = N

= 3 , N = 3

−

1

N

Adjoint: fund. + anti-fund.
dim. = N2 - 1

    = 8 , N = 3

Symmetric 2 index tensor,
dim. = (N2 + N)/2

    = 6, N=3



Lattice: bare triplet loop vs T and Nt

Note scale→
~ .3 !

Tc↑

Nt=4

Nt=6

Nt=8

Nt=10

 Nt = # time
         steps.

Bare loop 
vanishes as
Nt →∞

T/Tc→

Triplet 
loop↑



Lattice: bare sextet loop vs T and Nt
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Note scale→
~ .04 !

Sextet 
loop↑

 Nt = # time
         steps.

Bare sextet 
loop vanishes 
more quickly 
as Nt →∞

Tc↑ T/Tc→



Lattice: bare octet  loop vs T, at different Nt
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Note scale→
~ .06 !

Octet
loop ↑

 Nt = # time
         steps.

Octet loop
like sextet

Tc↑ T/Tc→



Old story: Gervais & Neveu ‘80. Polyakov ‘80. Dotsenko & Vergeles ‘80....
Kaczmarek, Karsch, Petreczky & Zantow: hep-lat/0207002, hep-lat/0406036, 
DHLOP ’03...  Petreczky & Petrov hep-lat/0405009, Cheng et al. hep-lat/0608013.
Gupta, Hubner & Kaczmarek 0711.2251 = GHK
Usual interest: loops with cusps.  Here: term special to lattice:
Nt = 1/(a T) = # time steps, “a” = lattice spacing

Renormalization of Wilson loops

Vanishes with dimensional regularization, hence ignored previously.  
Renormalize (non-local) operator by multiplicative renormalization:

< !bare
R >= ZR < !renR > ; ZR = e−fR(g2)Nt

N.B.: the function fR(g2) is not determined perturbatively, but numerically
from lattice simulations.  Nt → ∞ in continuum limit: all loops vanish! (fR > 0)

< !R > −1 = (−)
CR g2

T

∫ 1/a d3k

k2
+ . . . = (−) fR(g2)Nt



Ambiguities in renormalized loops
Renormalization valid for arbitrary Wilson loops:

W = tr P e
ig

∮
Aµdxµ

; Wbare = Zdiv Wren

Two ambiguities:

Zdiv = eE0L
Z0 Z(g2

. . .)L/a ; Wren → e−E0L
Z

−1

0 Wren

Overall scale trivial: Z0  = 1 by requiring <loop> → 1 as T →∞.  
E0? At T = 0 in a pure gauge theory, for a rectangular loop R x t in size,

<W >= e−V (R)t , V (R→∞) ∼ σR + E0 −
π

12 R
+ . . .

σ = string tension, term ~1/R = Luscher term, universal.
In quantum mechanics, E0 is unphysical, just overall phase in wave function.
Claim: for a renormalized loop, E0 is physical.



Zero point energy, perturbative & non-pert.

                    order by order in perturbation theory: obvious with dimensional reg.
Also Pauli-Villars, higher derivatives, which eliminate power-law divergences.

Dim.’y:                          .  But then not renormalization group invariant.

Could have                                    but this is a non-perturbative zero point energy.

Generally,                                 .  Consider E0non-pert in (effective) string models.

Nambu model:                              Corrections to Nambu ~1/R5 !
Arvis ’83, Luscher & Weisz hep-th/0406205, 
Drummond hep-th/0411017

Generally, though, non-zero.  For “smooth” string:
where κ is the coupling of the extrinsic curvature.
Braaten, RDP, Tse ’87

E0non-pert provides sensitive test of corrections to Nambu string model!

Epert
0 ∼ ΛMS

E0 ∼ ΛMS e−#/g2

Enon−pert
0 = #

√
σ

Enon−pert
0 = 0

Enon−pert
0 = −κ

4
√

σ

Epert
0 = 0

VNambu(R) = σR

√
1− π

12σR2



4. Lattice: renormalized Polyakov loops
          Two methods for renormalizing loops

Casimir scaling of ren. constant
(Approx.) Casimir scaling of ren’d loops
“Semi”-QGP
Adjoint loops

 



Ren.’d loops unique after imposing E0pert = 0.
How to determine Z(g2) without computing it in perturbation theory?
Bielefeld: compare to perturbation theory for (small) Wilson loops; “QQbar” ren.
DLHOP: work at different Nt, same T: “direct” ren.
GHK: for pure gauge SU(3), two methods agree to numerical accuracy:

(Non-perturbative) renormalization of Polyakov loops
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each representation has different ZR

Numerically find very useful relation,
Casimir scaling of ren. constants:
all Z’s follow from fundamental rep.
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Lattice: renormalized loop
GHK:  Lattice SU(3), no quarks, triplet loop
            <loop> ~ 1/2 at Tc+.   N=3 close to Gross-Witten point?

semi-QGP: from (exactly) Tc+ to 2 - 4 Tc (?).   <loop> ~ constant above 4 Tc.
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 Lattice: renormalized loop, with quarks
Cheng et al, 0710.0354: ~ QCD, 2+1 flavors.  Tc ~ 190 MeV, crossover.
<loop>: nonzero from ~ 0.8 Tc; ~ 0.3 at Tc; ~ 1.0 at 2 Tc.
Semi-QGP from ~ 0.8 Tc (below Tc) to ~ 2-3 Tc (?). <loop> small at Tc .
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Lattice: ren.’d adjoint loop small below Tc

GHK: SU(3), pure gauge.  Adjoint loop: !adj. =
1

N2 − 1
(
|trL|2 − 1

)

Below Tc: Z(N) charged loops vanish.  <loopadjoint> Z(N) neutral, can be non-zero
Large N factorization: 

So <loopadjoint> ~ 10% at Tc−?  No, ~ 2% !
Only true in matrix model, where all loops vanish in a confined phase.
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〈!adj〉 ∼ |〈!N 〉|2 + 1/N2



5. Goal: (complete) effective theory near Tc



Complete effective theory for semi-QGP
Lattice shows <loop>  ≠ 1  near Tc => large A0 ~ T/g.  Effective theory for large A0?

Euclidean theory: determine loop potential from numerical simulations?
Wozar, Kaestner, Wellegehausen, Wipf, & Heinzl hep-lat/0605012;0711.0868; 0808.4046
Dumitru & Smith 0711.0868; Velytsky, 0805.4450.

Simple guess: temperature dependent Vandermonde potential, does not work. 
Also corrections to kinetic terms, etc.

Hope: gluon potential, where quarks can be incorporated perturbatively.

Alternately: Polyakov NJL model.  Fit potential to lattice data.  Most useful.    
Fukushima: hep-ph/0303225; 0803.3318; 0809.3080
Sasaki, Friman, & Redlich hep-ph/0611147
Ratti, Thaler & Weise hep-ph/0505256; Roessner, Hell, Thaler, & Weise 0712.3152
Hell, Roessner, Cristoforetti, & Weise, 0810.1099

V = m2 !adj +
∑

j

κj !j



Lattice: pressure & “flavor independence”

  p(T)          
pideal(T)↑

T/Tc→

←1.0

Pure SU(3): weakly 1st order QCD: crossover
Bielefeld: properly scaled,  ≈ universal pressure
Not exact, but severe constraint on any effective theory
Ideal: increases by ~ 3.  Tc: decreases by ~ 1/3.

p

pideal

(

T

Tc

)

≈ const.

← QCD:
2+1 flavors

Tc↑



6. Effective theory, near Tc, in Euclidean spacetime



Effective theory for large A0

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

Lattice shows <loop>  ≠ 1  near Tc => large A0 ~ T/g.  Effective theory for large A0?
For small A0, effective theory is just QCD3 + massive (adjoint) scalar, A0:

Symmetries for large A0?  Certainly, invariance under static gauge transf.’s.
Plus: “large” gauge transformations - spatially constant, time dependent.  For SU(N):

Ω(τ) = e2πiτT tNN

, tNN =
1
N

(
1N−1 0

0 −(N − 1)

)

This Ω(τ) is only valid c/o quarks: Ω(1/T) = e2 π i/N Ω(0) : center symmetry
    
With quarks, consider strictly periodic transf:  Ωp(τ)= ΩN(τ).

All theories must respect invariance under such strictly periodic gauge transf.’s.
     For any gauge group, with any matter fields; even for QED.



Effective electric field?

Want 3D effective thy. for large A0 ~ T/g.
Valid for r > 1/T, so A0 varies slowly in space, momenta p < T .

Original electric field Ei4D = Di A0 - ∂0 Ai .  So: Ei3D = Di A0 ?
For large gauge transf. Ωp(τ): 

Constant shift in A0 , time dependent rotation of Ai .   

Di A0 = (∂i  -  i g [Ai ,) A0  not invariant for AiaN as [taN, tNN ] ≠ 0. 
Of course, Ei4D  invariant under Ωp(τ) .

Ei3D =  Di A0  at small A0, but not at large A0!  
  Periodicity in q → q+1 violated: true only for kinetic, not potential terms.  
  Diakonov & Oswald hep-ph/0303129; hep-ph/0312126; hep-ph/0403108
  Megias, Arriola, & Salcedo, hep-ph/0312133      

Form Ei3D from Wilson lines?

Adiag
0 → Adiag

0 +
2πT

g
N tNN , Ai →

1
−ig

Ω†
p(τ)Ai Ωp(τ)



Electric field of Wilson lines

Wilson line SU(N) matrix, so diagonalize:

Static gauge transf.’s: diagonal matrix λ invariant, Ω changes.

Strictly periodic Ωp (τ) :  λa → λa + 2 π × integer: λa  periodic. 

Use just eigenvalues, Ei3D ~ ∂i λ?  No, Ei3D ≠  Di A0 at small A0

Ei3D hermitean, so:

Small A0 OK, but does not fix c1, c2...

Large but abelian A0, Ai = 0: if Ei3D = ∂i A0,  must have c1=c2=...=0. 

Necessary for interfaces to match at leading order.  Beyond: c1, c2 ... ~ g2. 

In general, infinite number of terms enter.  
       Calculable perturbatively, match through interfaces, Z(N) or U(1).

L(x) = Ω(x)†e iλ(x) Ω(x)

E3D
i (x) =

T

ig
L
†(x)DiL(x)(1 + c1|trL|

2 + . . .)



Leff of Wilson lines at 0th order
To leading order, 

Gauge covariant “average” in time: 

Lagrangian continuum form of Banks and Ukawa ’83,  on lattice:

To 0th order, Lagrangian for SU(N) principal chiral field.  
Non-renormalizable in 3D, but only effective theory for r > 1/T.
Instanton number in 4D = winding number of L in 3D

Linear model: many more terms.  Interfaces match approximately, not exactly.
Vuorinen & Yaffe hep-ph/0604100.  Kurkela, 0704.1416.  
de Forcrand, Kurkela, & Vuorinen, 0801.1566.  Korthals-Altes 0810.3325

E3D
i =

T

ig
L
† Di L

Leff
cl =

1

2
trG2

ij +
T 2

g2
tr |L†DiL|

2

L(τ) = e
ig

∫
τ

0
Ao(τ ′)dτ ′

; L = L(1/T )

E3D
i /T =

∫ 1/T

0

dτ L(τ)† ∂iA0(τ) L(τ) − L
†[Ai,L]



Confinement & adjoint Higgs phase?

Diagonalize L = Ω† e i λ  Ω  
Static gauge transf.’s U: e i λ  invariant, Ω not:

Electric field term:

1st term same as abelian
2nd term gauge invariant coupling of electric & magnetic sectors

<e i λ > = 1: no Higgs phase.  True in perturbation theory, order by order in g2

If <e i λ > ≠ 1, Higgs phase,
In weak coupling, diagonal gluons massless, 
off diagonal massive (a,b = 1...N)

But for 3D theory, gluons couple strongly.  Effects of Higgs phase?

N.B.: above ‘t Hooft’s abelian projection for Wilson line.

Ω → ΩU , Di → U
† Di U

m
2

ab = g
2|eiλa − e

iλb |2

tr |L†DiL|
2 = tr (∂iλ)2 + tr |[Ω Di Ω†, eiλ]|2



Loop potential, perturbative & not.

Leff
1 loop = −

2 T 4

π2

∞∑

m=1

1

m4
|trLm|2 .

U(N): constant L, 1 loop order:

Perturbative vacuum <e i λ > = 1,
stable to leading order, to any finite order in g2 . 

Can compute corrections to effective Lagrangian at next to leading order, NLO.
At NNLO, ~ g3  , need to resum mDebye .  Eventually, mmagnetic

SU(3) lattice: near Tc , pressure(T) ~ T4 and  ~T2 .

To represent: add, by hand:

Bf ~ # Tc2 “fuzzy” bag const.  Non-pert., infinity of possible terms.

Bf ≠ 0 ⇒ <e i λ > ≠ 1 ⇒ Higgs phase near Tc

                                             

Leff
non−pert.(L) = + Bf T

2 |trL|2



Confinement in Leff

SU(N), no quarks: in confined state, all Z(N) charged loops vanish:

Satisfied by “center symmetric” vacuum:

At finite N, perturbative pressure(Lconf) negative.  Not so good.

Large N: pressure(Lconf) ~ 1, vs. ~ N2 in deconfined phase.

At N=∞, center sym. state can represent confined vacuum.

Lconf familiar from random matrix models: 
      completely flat eigenvalue distribution, from eigenvalue repulsion.

Where does eigenvalue repulsion arise dynamically?  

〈trLj
conf

〉 = 0 , j = 1 . . . (N − 1)

Lconf = diag(1, z, z
2
. . . z

N−1) , z = e2πi/N
.



7. Effective theory, near Tc, in Minkowski spacetime



 Semi-QGP in weak coupling
Y. Hidaka & RDP 0803.0453.  Semi-classical expansion of the semi-QGP:

Aµ = Acl
µ + Bµ , Acl

0 = Q/g .

Q ≠ 0: just like semi-classical calc. of ‘t Hooft loop.  Q = Qa , diagonal matrix.
Work at large N, large Nf, use double line notation.  (Finite N ok, messy.)

iDcl
0 = p0 + Qa

= pa

0

iDcl
0 = p0 + Qa

− Qb
= pab

0

Perturbation theory in Bμ’s same as Q = 0, but with “shifted” p0’s.
Amplitudes in real time: p0a → i ω, etc.  Furuuchi, hep-th/0510056

Q (imaginary) chemical potential 
for (diagonal) color charge.
e.g., for quarks:

ñ(E − iQa) =
1

e(E−iQa)/T + 1

a

a
b



 How color evaporates in the semi-QGP
AMMPV: simple trick.  

L = ei Q/T = Wilson line.  Obtain expressions in terms of moments of L, Lj.  

We don’t know (yet) effective theory for Q’s. So we guess.

Take first moment, l = <loop> = < tr L>/N, from lattice for N = 3.
For higher moments, given l, assume either: 1. Gross-Witten, or 2. step function.

L ~ propagator of infinitely heavy (test) quark.
In this semi-cl. expansion, for colored fields of any momentum and mass,
As l→0, all quarks suppressed ~ l ; all gluons, ~ l2 : universal color evaporation

Smells right: all colored fields should evaporate as <loop> → 0.

tr
1

e(E−iQa)/T
− 1

= tr

∞∑

j=1

e
−j(E−iQa)/T

=

∞∑

j=1

e
−jE/T

tr L
j



 Shear viscosity in the semi-QGP

η

T 3
=

#

g4 log(c/g)
R(") ; R(" → 0) ∼ "2

Shear viscosity, η, in the complete QGP:
Arnold, Moore & Yaffe, hep-ph/0010177 & 0302165 = AMY.
Generalize to Q ≠ 0: Boltzmann equation in background field.

                  

“Strong” QGP, large coupling   S ~ 1, C ~ (coupling)2 >> 1.
  N = 4 SU(N), g2 N = N = ∞: η/s = 1/4π .  Kovtun, Son & Starinets hep-th/0405231

“Semi” QGP: small loop at moderate coupling:
                       Pure glue: S ~ <loop>2, C ~ g4 <loop>2

                       With quarks: S ~ <loop>, C ~ g4

To leading log order: # from AMY, constant “c” beyond leading log

η =

S2

C
S = source, C = collision term.  Two ways of getting small η:

Both: η ~ <loop>2



 Counting powers of <loop> = l → 0

X
S ∼ !

X
S ∼ !

2

∼ e
+iQa/T

∼ e
−iQa/T

C ∼ !
2

C ∼ 1



 Small shear viscosity from color evaporation
R = ratio of shear viscosity in semi-QGP/complete-QGP at same g, T.
Two different eigenvalue distributions give very similar results!

When <loop> ~ 0.3, R ~ 0.3.

! →

R(!) ↑

∼ !
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N



 Shear viscosity/entropy
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.

0.8
←

1

4π
 0

 1

 2

 3

 4

 5

 6

 1  1.5  2

c = 4

η/
s l

a
t

0

c = 8

c = 16

c = 64
c = 32

Tc

5.0

T/Tc→1 1.5 2.0

η
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↑

1.0

2.0



Strong- vs. Semi-QGP at the LHC

η/s ↑ He

N2

H2O

RHIC?→
Tc↑ 2 Tc↑

Lacey, Ajitnand, Alexander, Chung, 
Holzman, Issah, Taranenko, 
Danielewicz & Stocker, 
nucl-ex/0609025  ↓

At RHIC,  η/s ~ 0.1 ± 0.1
Luzum & Romatschke, 0804.4015

Close to N = 4 SU(∞), η/s =1/(4 π).

Strong-QGP: in N = 4 SU(∞),
add scalar potential to fit lattice pressure
But η/s remains = 1/4π !
Evans & Threlfall, 0805.0956
Gubser & Nellore, 0804.0434
Gursoy, Kiritsis, Mazzanti & Nitti 0804.0899
So LHC nearly ideal, like RHIC.

Semi-QGP, and non-relativistic systems →
Large change in η/s from Tc to 2 Tc.
At early times, LHC viscous,
                         unlike RHIC


