
QCD phase diagram at μ ≠ 0

1. Standard lore: 
One transition, chiral = deconfined, “semicircle”

2. Large number of colors, Nc: 
    Two transitions, chiral ≠ deconfinement 

         “Quarkyonic” matter
Confined, chirally symmetric baryons: massive, parity doubled.

3. QCD?  
    Perhaps: phase intermediate between nuclear matter and “just” quarks

     McLerran & RDP, 0706.2191.  Hidaka, McLerran, & RDP 0803.0279
     Hidaka, Kojo, McLerran, & RDP ’09...
     



 

The first semicircle

ρBaryon ↑

Cabibbo and Parisi ‘75: Exponential (Hagedorn) spectrum limiting temperature,
     or transition to new, “unconfined” phase.  One transition.

Punchline today: below for chiral transition, deconfinement splits off at finite μ.

T →



Two transitions?  Casher’s argument.
Shuryak ‘82, RDP ‘82: Natural to have two transitions: 

Td = deconfinement, Tχ = restoration of chiral symmetry

Tχ > Td : for Tχ > T > Td , deconfined but massive quarks.  Very natural.  
Chiral symmetry breaking is due to a (sufficiently) strong  coupling.  
At Td , coupling is large enough to deconfine, but not restore chiral sym.

Td > Tχ :  for Td > T > Tχ , confined but chirally symmetric quarks (?).
Casher ’79: confining theories break chiral symmetry.  

Meson in rest frame: blue, direction of motion; red: spin.

To be confined, a left moving quark must mix with a right mover.
For massless quarks, chirality = ± helicity: spin = ± momentum
Thus a confined, massless quark must flip its helicity = ± chirality.
But in QCD, gluon interactions conserve chirality.  So no confinement!
Chirality is flipped by mass, so ok if chiral symmetry is broken.
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Phase diagram, ~ ‘06
Lattice, T ≠ 0, μ = 0: two possible transitions; one crossover, same T.   
Karsch hep-lat/0601013.  Remains crossover for μ ≠ 0?  
Stephanov, Rajagopal, & Shuryak hep-ph/9806219, /9903292, /0010100
     Critical end point where crossover turns into first order transition

T ↑

μ →



Experiment: freezeout line
Cleymans & Redlich nucl-th/9906065...Kraus, Cleymans, Oeschler, Redlich 0808.0611
Line for chemical equilibriation at freezeout ~ semicircle.
N.B.: for T = 0, goes down to ~ nucleon mass.

μBaryon →

T ↑
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Experiment vs. Lattice

μquark →

Lattice “transition” appears above freezeout line?  
Fodor, Katz, & Schmidt hep-lat/0701022; Schmidt ‘07
N.B.: small change in Tc with  μ?

T ↑
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EoS of nuclear matter
Akmal, Panharipande, & Ravenhall nucl-th/9804027: 
Equation of State for nuclear matter, T=0
     E/A = energy/nucleon.  Fits to various nuclear potentials: A18= Argonne 18...
PNM = pure neutron matter.  SNM = symmetric nuclear matter (equal #’s n’s, p’s)
Binding energy of nuclear matter ~ 15 MeV!  
Much smaller than any natural hadronic scale: fπ , ΛMS...

E/A ↑

ρBaryon →



Expansion in large Nc

‘t Hooft ’74: let Nc → ∞, with λ = g2 Nc fixed.
~ Nc2 gluons in adjoint representation, vs ~ Nc quarks in fundamental rep. ⇒ 
     large Nc  dominated by gluons (iff Nf = # quark flavors small)
Double line (birdtrack) notation:

~ g2 Nc = λ 

Planar diagram, ~ λ2 Non-planar diagram, ~ λ2 /Nc 
Suppressed by 1/Nc.  Trace terms also 1/Nc 



Quark loops suppressed at large Nc 

Quark loops are suppressed at large Nc if Nf , # quark flavors, is held fixed 

     Thus: limit of: large Nc , small  Nf 

Quarks introduced as external sources.  

Analogous to “quenched” approximation, expansion about Nf = 0. 

     Veneziano ‘78: take both Nc and Nf  large.  
     Can use baryon number as order parameter: Hidaka, McLerran, & RDP.

∼ g2
= λ ×

1

Nc



Form factors at large Nc 

< J(x)J(0) > ∼ Nc

J ~ (gauge invariant) mesonic current

Infinite # of planar diagrams for < J J >:

XX

XX X X

Confinement => sum over mesons, form factors ~ Nc1/2

< J(x)J(0) > ∼

∫
d4p eip·x

∑
n

< 0|J |n >
1

p2 + m2
n

< n|J |0 >

< J(x)J(0) > ∼ Nc ⇒ < 0|J |n >∼
√

Nc if mn ∼ 1



Mesons & glueballs free at Nc = ∞

With form factors ~ Nc1/2 , 3-meson couplings ~ 1/Nc1/2 ; 4-meson, ~ 1/Nc

For glueballs, 3-glueball couplings ~ 1/Nc , 4-glueball ~ 1/Nc2

Mesons and glueballs don’t interact at Nc = ∞.  
     Large N limit always (some) classical mechanics Yaffe ‘82



Baryons at large Nc 

Witten ‘79: Baryons have Nc quarks, so nucleon mass MN ~ Nc ΛQCD .

Baryons like “solitons” of large Nc limit ( ~ Skyrmion) 

Leading correction to baryon mass:

Appears ~ g4 Nc4 ~ λ2 Nc2 ?

No, iteration of average potential,
mass still ~ Nc .

g2
× Nc × Nc ∼ λNc



Baryons are not free at Nc = ∞ 

Baryons interact strongly.  Two baryon scattering ~ Nc :

g2
× Nc × Nc ∼ λNc

Scattering of three, four... baryons also ~ Nc 

Mesons also interact strongly with baryons, ~ Nc0 ~ 1

g2
× Nc ∼ λ



Towards the phase diagram at Nc = ∞
As example, consider gluon polarization tensor at zero momentum.
     (at leading order, ~ Debye mass2 , gauge invariant)

Πµµ(0) = g2

((

Nc +
Nf

2

)

T 2

3
+

Nfµ2

2π2

)

= λ
T 2

3
, Nc = ∞

For μ ~ Nc0 ~ 1, at Nc = ∞ the gluons are blind to quarks.

When μ ~ 1, since gluons don’t feel quarks, the
deconfining transition temperature is independent of μ!  Td(μ) = Td(0)

Chemical potential only matters when larger than mass:
     μBaryon > MBaryon.  Define mquark = MBaryon/Nc ; so μ > mquark .

“Box” for T < Tc ; μ < mquark: confined phase baryon free, since their mass ~ Nc

Thermal excitation ~ exp(-mB/T) ~ exp(-Nc) = 0 at large Nc.
     So hadronic phase in “box” = mesons & glueballs only, no baryons.



Phase diagram at Nc = ∞, I
At least three phases.  At large Nc, can use pressure, P, as order parameter.
Hadronic (confined): P ~ 1.  Deconfined, P ~ Nc2.  Thorn ’81; RDP ’84...
P ~ Nc: quarks or baryonic = “quark-yonic”.  Chiral symmetry restoration?

L. McLerran & RDP, 0706.2191
     N.B.: mass threshold at mq neglects (possible) nuclear binding, Son.

T↑

Td

μ→mq

           ↑
← Hadronic →

            ↑
←Quarkyonic→ 

Deconfined
↓1st order

P ~ 1

P ~ Nc2

P ~ Nc P ~ Nc 



Nuclear matter at large Nc 

μBaryon = √kF2 + M2 , kF = Fermi momentum of baryons. 
Pressure of ideal baryons density times energy of non-relativistic baryons:

Pideal baryons ∼ n(kF )
k2

F

M
∼

1

Nc

k5
F

ΛQCD

δPresonances ∼

1

M

k8
F

Λ3
QCD

∼

1

Nc

k8
F

Λ4
QCD

δPtwo body int.′s ∼ Nc
n(kF )2

Λ2
QCD

∼ Nc
k6

F

Λ2
QCD

This is small, ~ 1/Nc .  The pressure of the I = J tower of resonances is as small:

Two body interactions are huge, ~ Nc in pressure.    

At large Nc , nuclear matter is dominated by potential, not kinetic terms!
Two body, three body... interactions all contribute ~ Nc .



µ − mq =
µB − M

Nc

=
k2

F

2MNc

∼

1

N2
c

k2

F

kF ∼

1

N2
c

ΛQCD

Window of nuclear matter
Balancing Pideal baryons ~ Ptwo body int.’s, interactions important very quickly,

For such momenta, only two body interactions contribute.

By the time kF ~ 1, all interactions terms contribute ~ Nc to the pressure.  

But this is very close to the mass threshold,

Hence “ordinary” nuclear matter is only in a very narrow window.

One quickly goes to a phase with pressure P ~ Nc.

     So are they baryons, or quarks?



Perturbative pressure
At high density, μ >> ΛQCD,  compute P(μ) in QCD perturbation theory.  

To ~ g4, (Freedman & McLerran)4 ’77
Ipp, Kajantie, Rebhan, & Vuorinen, hep-ph/0604060

Ppert.(µ) ∼ NcNf µ4 F0(g
2(µ/ΛQCD), Nf )

At μ ≠ 0, only diagrams with at least one quark loop contribute.  Still...

For μ >> ΛQCD, but μ ~ Nc0 ~ 1, calculation reliable.  

Compute P(μ) to ~ g6 ? No “magnetic mass” at μ ≠ 0, well defined ∀ (g2)n.



“Quarkyonic” phase at large Nc

As gluons blind to quarks at large Nc, for μ ~ Nc0 ~ 1, confined phase for T <  Td

This includes μ >> ΛQCD!  Central puzzle.  We suggest:

To the right: Fermi sea =>

Deep in the Fermi sea, k << μ , 
      looks like quarks.

But: within ~ ΛQCD of the Fermi surface,
     confinement => baryons 

We term combination “quark-yonic”

ΛQCD 

μ 

OK for μ >> ΛQCD.  When μ ~ ΛQCD, baryonic “skin” entire Fermi sea.

But what about chiral symmetry breaking?



Skyrmions and Nc = ∞ baryons

L = f2

π tr|Vµ|
2 + κ tr[Vµ, Vν ]2 , Vµ = U†∂µU , U = eiπ/fπ

Witten ‘83; Adkins, Nappi, Witten ‘83: Skyrme model for baryons

Baryon soliton of pion Lagrangian: fπ ~ Nc1/2 ,  κ ~ Nc , mass  ~ fπ2 ~ κ ~ Nc .

Above Lagrangian simplest form: presumably (?) infinite series in Vμ.

Single baryon: at r = ∞, πa = 0, U = 1.  At r = 0,  πa =  π ra/r . 
Baryon number topological: Wess & Zumino ’71; Witten ’83.

Huge degeneracy of baryons: multiplets of isospin and spin, I = J: 1/2 ... Nc/2.
     Obvious as collective coordinates of soliton, coupling spin & isospin

Dashen & Manohar ’93, Dashen, Jenkins, & Manohar ‘94:  
     Baryon-meson coupling ~ Nc1/2, 
     Cancellations from extended SU(2 Nf) symmetry. 



Skyrmion crystals 
Kutschera, Pethick & Ravenhall (KPR) ’84;  Klebanov ’85 + ... 
Lee, Park, Min, Rho & Vento, hep-ph/0302019; Park, Lee, & Vento, 0811.3731: 

At large Nc, baryons are heavy, so form a crystal.
Form Skyrmion crystal by taking periodic boundary conditions in a box.
Lee+... ‘03 : box of size L, units of length 1/(√κ fπ ), plot baryon number density:

At low density, chiral symmetry broken by Skyrme crystal, as in vacuum.

But chiral symmetry restored at nonzero L (density):  < U > = 0 in each cell.  

L=2.0→ ←L=3.5



Skyrmion crystals as quarkyonic matter
Why chiral symmetry restoration in a Skyrmion crystal?
Goldhaber & Manton ’87: due to “half” Skyrmion symmetry in each cell.

Easiest to understand with “spherical” crystal: sphere instead of cube...
KPR ’84, Ruback & Manton ’86, Manton ’87.  Consider the “trivial” map:  

Solution has unit baryon number per unit sphere, and so is a crystal.  
Solution is minimal when R < √2 (* 1/(√κ fπ).  

Forkel, Jackson, Rho, & Weiss ’89 =>
looks like standard chiral transition!
Excitations are chirally symmetric.

But Skyrmions are not deconfined.
Example of quarkyonic matter,
chirally broken and chirally symmetric.

U(r) = exp(i f(r) r̂ · τ) ; f(r) = π
(
1− r

R

)

<σ>↑

R→
 ↑√2



Casher’s argument in a Fermi sea
What about Casher’s argument?
In vacuum, can neglect scattering with baryons, as baryon (anti-baryon) pairs
       are exponentially suppressed, exp(-N).

In a Fermi sea, though, baryon’s are there by construction.  Thus a massless
      quark can scatter off of a baryon in the Fermi sea:

Quark baryon scattering is large.  Thus a quark can scatter off of a baryon, in
     the Fermi sea.  This process can flip the chirality, since quark baryon scattering

does not conserve chirality or helicity.  

Argument special to having a Fermi sea: one needs some baryons about.
Standard Casher argument does apply at T ≠ 0, μ = 0, without a Fermi sea.



Schwinger-Dyson equations at large Nc: 1+1 dim.’s

‘t Hooft ‘74: as gluons blind to quarks at large Nc, S-D eqs. simple for quark:
     Gluon propagator, and gluon quark anti-quark vertex unchanged.

To leading order in 1/Nc, only quark propagator changes:

‘t Hooft ‘74: in 1+1 dimensions, single gluon exchange generates linear potential,

g2

2D

∫
dk

eikr

k2
∼ g2

2D r

In vacuum, Regge trajectories of confined mesons.  Baryons?

Solution at μ ≠ 0?  Should be possible, not yet solved.

M. Thies, hep-th/0601049, C. Boehmer, U. Fritsch, S. Kraus, & M. Thies, 0807.2571
Gross-Neveu model has crystalline structure at μ ≠ 0



Quarkyonic matter via Schwinger-Dyson 

Glozman & Wagenbrunn 0709.3080, 0805.4799; Glozman 0812.1101: 
In 3+1 dimensions, confining gluon propagator, 1/(k2)2 as k2 -> 0:
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σ = string tension.  Very similar to 1+1 dimensions. μ = 0: 

Take Schwinger-Dyon eq. at large Nc: confinement unchanged by μ ≠ 0.  
Treat μ by usual cutoff in momentum space: for confining system, same as μ ≠ 0?

Chiral symmetry restoration:
Transition second order: not evident.
Also: all infrared divergences cancel.

No nuclear matter: 
restore chiral symmetry before Fermi sea forms

〈ψψ〉 = (.23
√

σ)3

µχ = .11
√

σ

g2

∫
d3k

eikr

k2

(
1 +

σ

k2

)
∼ g2 σ r , r →∞



Asymptotically large μ, grows with Nc

For μ ~ (Nc)p, p > 0, gluons feel the effect of quarks.  Perturbatively,

Ppert.(µ, T ) ∼ NcNf µ4 F0 , NcNf µ2 T 2 F1 , N2
c T 4 F2 .

First two terms from quarks & gluons, last only from gluons.  Two regimes:
          
μ ~ Nc1/4 ΛQCD : Nc μ4 F0 ~ Nc2 F2 ~ Nc2 >> Nc μ2 F1 ~ Nc3/2.
        Gluons & quarks contribute equally to pressure; quark cont. T-independent.

μ ~ Nc1/2  ΛQCD : New regime: m2Debye ~ g2 μ2 ~ 1, so gluons feel quarks.

     Nc μ4 F0 ~ Nc3 >> Nc μ2 F1 , Nc2 F2 ~ Nc2 .
     Quarks dominate pressure, T-independent.

Eventually, first order deconfining transition can either: 
end in a critical point, or bend over to T = 0: ?



T↑

Td

μ→mq

↓1st order

Phase diagram at Nc = ∞, II

χ sym. 
broken

Chiral transition
Quarkyonic

Deconfined

Hadronic
“Box”

Chirally symmetric

We suggest: quarkyonic phase includes chiral trans.  Order by usual arguments.

Mocsy, Sannino & Tuominen hep-th/0308135:
       splitting of transitions in effective models
But: quarkyonic phase confined.  Chirally symmetric baryons?



Chirally symmetric baryons: parity doubling
B. Lee, ‘72; DeTar & Kunihiro ’89; Jido, Oka & Hosaka, hep-ph/0110005; 
Zschiesche et al nucl-th/0608044.  Wigner-Weyl mode: two baryon multiplets.  
One usual nucleon, + parity.  Other state with - parity.  Perhaps N*(1535)
Transform opposite under chiral transformations:

ψL,R → UL,R ψL,R ; χL,R → UR,L χL,R

Chirally symmetric mass

Also: usual sigma field,                           , Φ → UL Φ U
†
R

In component form:

g1 ψ(σ + iγ5τ · π)ψ + g2 χ(σ − iγ5τ · π)χ

N.B.: difference in signs for axial coupling between two fields.

m0

(
ψL χR − ψR χL + χR ψL − χL ψR

)

g1 ψL Φ ψR + g2 χR Φ χL



Parity doubled baryons
Letting < σ > = σ0 , diagonalize 

Looks ok: when σ0 = 0, states degenerate, with mass m0.  
Can arrange couplings so that g1 ~ 13, g2 ~ 3 are natural; m0 small, ~ 300 MeV.

But: as parity partner, gA should be +1 for N, -1 for parity partner.

Takahashi & Kunihiro 0801.4707: 
lattice, two flavors dynamical quarks,
relatively heavy

gA ~ 0 for parity partner!  

Where is the parity partner of the nucleon?
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Parity partners in vacuum?
Glozman hep-ph/0701081: Look at baryon mass spectrum in vacuum.
Find all states have parity partners except the lightest: e.g., nucleon, Δ...
So: either the N & Δ have no partner.  Or: they are very heavy.
Lighest states are clearly special!
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‘t Hooft anomaly condition
‘t Hooft ‘79; Coleman & Witten ‘80
A = flavor matrix, current J:
Construct 3-pt fnc, J = J+ + J-.
Axial anomaly: Γµνσ(P1, P2) = 〈Jµ(P1)Jν(P2)Jσ(Q)〉

With chiral symmetry breaking, pions work, 

Massless baryons possible?  Define currents as 

Must satisfy same anomaly condition:

Generally, very hard to do.

Jµ
± = ψ A±(1± γ5)γµ ψ

Qσ Γµνσ = −g3Nc

π2
tr(A3

+ −A3
−) εµνσκ Pσ

1 Pκ
2

tr(B3
+ −B3

−) = Nc tr(A3
+ −A3

−)

〈u|Jµ
±|u〉 = u γµBµ(1 ± γ5)u

Γµνσ ∼ Qσ/Q2

Anomaly is due to ultraviolet effects, and so unaffected by T, μ.  
Thus effects of the anomaly are unchanged by a medium?  No.



Anomalies in vacuum
Usually, relate anomalies to pions.  Adler ’69: can compute π0 → γγ.
Let V = vector current, couples to photons.  Conserved.
A = axial vector current, couples to pions.  Isospin-3 comp. = axial anomaly:

∂µV µ = 0 ; ∂µAµ = −e2Nc

48π2
FµνF̃µν

Consider “VVA”:

This satisfies
Γµνσ(P1, P2) = 〈V µ(P1)V ν(P2)Aσ(Q)〉 ; −Q = P1 + P2

Pµ
1 Γµνσ = P ν

2 Γµνσ = 0 Qσ Γµνσ = −e2Nc

12π2
εµνσκ Pσ

1 Pκ
2

Construct 
T µν = e2Q2〈V µ(P1)V ν(P2)π〉 εµ

1 εν
2 T µν = gπγγ εµνσκεµ

1 εν
2Pσ

1 Pκ
2

and take out the one pion pole term, using PCAC:

Γ̃µνσ = Γµνσ + fπ
Qσ

Q2
T µν〈0|Aσ|π〉 = iQσfπ



Anomalies in vacuum, cont.’d
Most general amplitude which is Bose symmetric under photon exchange,
P1 μ ↔ P2 ν.  Also Lorentz invariant.  

Γ̃µνσ = T1ε
µνσκ(P1 − P2)κ + T2(εµσκλP ν

2 − ενσκλPµ
1 )Pκ

1 Pλ
2

+T3(εµσκλP ν
1 − ενσκλPµ

2 )Pκ
1 Pλ

2

Current conservation: 

T1 + P 2
1 T2 + P1 · P2 T2 = 0

Pµ
1 Γ̃µνσ = P ν

2 Γ̃µνσ = 0

Axial anomaly:

−2T1 = fπgπγγ −
e2Nc

12π2

Now consider on shell photons and pions: P12 = P22 = Q2 = 0.  
Then T1 = 0, which relates pion-photon coupling as:

T1 = 0 is Sutherland-Veltman theorem.

Qσ Γ̃µνσ = fπT µν − e2Nc

12π2
εµνσκ Pσ

1 Pκ
2

fπ gπγγ =
e2Nc

12π2



Anomalies in medium
Itoyama & Mueller’83; RDP, Trueman & Tytgat hep-ph/9702362:
Now do the same in a medium.  Just have extra vector for rest frame, nμ

Γ̃µνσ = T1ε
µνσκ(P1 − P2)κ + T2(εµσκλP ν

2 − ενσκλPµ
1 )Pκ

1 Pλ
2

+T3(εµσκλP ν
1 − ενσκλPµ

2 )Pκ
1 Pλ

2

+T4 n · Q εµνκλPκ
1 Pλ

2 nσ + T5(n · P2 εµσλκnν − n · P1 ενσλκnµ)Pλ
1 Pκ

2

Current conservation: 
T1 + P 2

1 T2 + P1 · P2 T3 + (n · P1)2 T5 = 0

Axial anomaly:
−2T1 + (n · Q)2T4 = fπgπγγ −

e2Nc

12π2

On the mass shell:

Here fπ and gπγγ are functions of temperature, density....  
The axial anomaly does relate these to amplitudes, but they don’t vanish, even on
mass shell.  Sutherland-Veltman fails in a medium.  
Verified by explicit calculation to one loop order: at T≠ 0, T4 = 0, T5 ≠ 0 

fπ gπγγ =
e2Nc

12π2
+ (n · Q)2T4 + 2(n · P1)2T5



Banks-Casher and quarkyonic
Splittorff & Verbaarschot 0809.5259; Osborn, Splittorff & Verb. 0807.4584...

Use random matrix theory to study the sign problem.  
Valid for small box, epsilon regime.
In vacuum, eigenvalues of D purely imaginary:

D/ψ = λψ ; 〈ψψ〉 = 〈 1
D/ + m

〉 =
∫

dλ
ρ(λ)

λ + m

Banks-Casher:

At μ ≠ 0, eigenvalues of D + i μ γ0 complex, spread out into
complex plane, as at right.

Epsilon regime shows how to solve “Silver Blaze” problem of Cohen.

Trivial point: width of distribution determined by μ
Thus for large μ, should obtain chirally symmetric distribution;
i.e., quarkyonic phase

〈ψψ〉 ∼ ρ(0)



Baryons at Large Nf 
Veneziano ‘78: take both Nc and Nf  large.  Mesons Mij : i,j = 1...Nf . 
Thus mesons interact weakly, but there are many mesons.  
Thus in the hadronic phase, mesons interact strongly:

Π ∼ Nf g2
3π ∼ Nf/Nc

Pressure large in both phases: 
       ~ Nf2 in hadronic phase, ~Nc2, Nc Nf in “deconfined” phase.
Polyakov loop also nonzero in both phases.

Baryons: lowest state with spin j
has Young tableaux (Nc = 2n + 1) =>

dj =
(2j + 2) (Nf + n + j)! (Nf + n− j − 2)!
(Nf − 1)! (Nf − 2)! (n + j + 2)! (n− j)!



Baryons at Large Nf: order parameters 

dj ∼ e+Nc f(Nf /n) , f(x) = (1 + x) log(1 + x)− x log(x)

Y. Hidaka, RDP, & L. McLerran, 0803.0279:  Use Sterling’s formula,

Degeneracy of baryons increases exponentially.

Argument is heuristic: baryons are strongly interacting.  
Still, difficult to see how interactions can overwhelm exponentially growing 
spectrum, even for the lowest state.  

Use baryons as order parameter.  At T=0, fluctuations in baryon number,
<B2> ≠ 0 when Nc f(Nc/n) = mB/T, or

Tqk = f(Nf/n)
mB

Nc

At μ ≠ 0, baryon number itself:
     <B> ≠ 0 when Nc f(Nc/n) = (mB - Nc μ)/T: 

Tqk = f(Nf/n)
(

mB

Nc
− µ

)



Possible phase diagrams as Nf increases
The “rectangle” for small Nf becomes smoothed. 
Eventually, maybe the quarkyonic line merges with that for baryon condensation.
All VERY qualitative.  Clearly many possible phase diagrams!
With SUSY: condensation of Higgs fields as well.

Small Nf

Large Nf



Chiral Density Waves (perturbative)
Excitations near the Fermi surface?

At large Nc, color superconductivity suppressed, 
~ 1/Nc: pairing into two-index state:

Also possible to have “chiral density waves”, pairing of quark and anti-quark:
Deryagin, Grigoriev, & Rubakov ’92.  Shuster & Son, hep-ph/9905448.
Rapp, Shuryak, and Zahed, hep-ph/0008207.

Order parameter 
Sum over color, so not suppressed by 1/Nc.

Pair quark at + pf with anti-quark at - pf : for a fixed direction.
Breaks chiral symmetry, with state varying ~ exp(- 2 pf z).

Wins over superconductivity in low dimensions.  Loses in higher.
Shuster & Son ‘99:  in perturbative regime, CDW only wins for Nc > 1000 Nf

〈ψ(−"pf ) ψ(+"pf )〉



Quarkyonic chiral density waves

Consider meson wave function, with kernel:
Confining potential in 3+1 dimensions like 
Coulomb potential in 1+1 dim.s:

In 1+1 dim.’s, behavior of massless quarks near Fermi surface maps ~ μ  = 0!
Mesons in vacuum naturally map into CDW mesons.

Witten ‘84: in 1+1 dim.’s, use non-Abelian bosonization for QCD.
a, b= 1...Nc.  i,j = 1... Nf.

∫
dk0 dkz

∫
d2k⊥

1
(k2

0 + k2
z + k2

⊥)2
∼

∫
dk0 dkz

1
k2
0 + k2

z

Steinhardt ’80.  Affleck ’86.  Frishman & Sonnenschein, hep-th/920717...
Armoni, Frishman, Sonnenschein & Trittman, hep-th/9805155; AFS, hep-th/0011043..
Bringoltz 0901.4035; Galvez, Hietanan, & Narayanan, 0812.3449.

J ij
+ = ψ

a,i
ψa,j ∼ g−1∂+g ; Jab

+ = ψ
a,i

ψb,i ∼ h−1∂+h .



Bosonized quarkyonic matter
After non-Abelian bosonization, action factorizes into sum of g, in SU(Nf), and
h, in SU(Nc).  Action for g is

8π SWZW =
∫

d2z trB2
i + 2/3

∫
d3y εijk trBiBjBk , Bi = g−1∂ig .

Action for h,  is a SU(Nc) gauged WZW model.  But: g and h decouple!
Spectrum of h complicated, involves massive modes, like usual ‘t Hooft model.

Spectrum of g is that of usual WZW model, with massless modes.

Hence in 1+1 dim.’s, CDW are natural, but with massless excitations thereof.

In 3+1 dim.’s: have highly anisotropic state, somen-state:
Y. Hidaka, T. Kojo, L. McLerran, & RDP ’09...

Chiral condensate ~ ΛQCD2/μ2.  Length of somen-state large, ~ exp(Nc).
Quantum fluctuations tend to scramble the somen.  



Hadronic

T↑

μB→MN

Deconfined

Quarkyonic

?
χ sym. 
broken Chirally symmetric

Chiral trans.

XCritical end-point Deconfining trans.

Guess for phase diagram in QCD
Pure guesswork: deconfining & chiral transitions split apart at critical end-point?
Line for deconfining transition first order to the right of the critical end-point?
Critical end-point for deconfinement, or continues down to T=0?



6. ‘t Hooft basis of SU(N)
Drawing “birdtrack” diagrams,

or group theory made easy



Peculiar basis for two colors
Start with the usual Cartan basis.  

Now add one extra diagonal generator, − σ3, in addition to σ3.  Why?
Off-diagonal gen.’s: t12 and t21 labels the row and column of one nonzero element.
Can one do the same for the diagonal generator(s)?  More or less...:

σ+ =
(

0 1
0 0

)
= t12 ; σ− =

(
0 0
1 0

)
= t21 ; σ3 =

1
2

(
1 0
0 −1

)

σ3 =
(

1 0
0 0

)
− 1

2

(
1 0
0 1

)
= t11 ; −σ3 =

(
0 0
0 1

)
− 1

2

(
1 0
0 1

)
= t22

Usual relations for 
off-diagonal generators:

But not for the diagonal
generators:

Basis is not an orthonormal, since we added one extra generator.

tr(t12t21) = 1 ; tr(t12t11) = tr(t21t11) = . . . = 0

tr(t11)2 = tr(t22)2 =
1
2

; tr(t11t22) = −1
2



“ ‘t Hooft” basis for SU(N)
Off diagonal generators same as Cartan basis.  One diagonal generator same:

tNN =
1
N

(
−1N−1 0

0 N − 1

)
=

(
0N−1 0

0 1

)
− 1

N
1N

Unlike Cartan, construct N diagonal generators by permutations of diagonal 
element above:

t11 =
1
N

(
N − 1 0

0 −1N−1

)
=

(
1 0
0 0N−1

)
− 1

N
1N

t22 =
1
N




−1 0 0
0 N − 1 0
0 0 −1N−2



 =




0 0 0
0 1 0
0 0 0N−2



− 1
N

1N

For N=2, t22 = − σ3.  Now have N diagonal generators, t11, t22...tNN: one extra.
Advantage over Cartan: no preferred direction in group space.
Disadvantage: diagonal generators are not orthonormal.  
(Off-diagonal generators satisfy usual orthonormality relations.)



Birdtrack diagrams for the ‘t Hooft basis

(tab)cd = δa
c δb

d −
1
N

δab δcd

Let a,b,c,d... = 1...N represent indices for fundamental representation.  
Denote adjoint indices by a pair (ab): N2 of these!
Then the generators can be represented simply by a “birdtrack” diagram:

−

1

N

ba

dc

ba

dc
First term is the single element of a matrix.  The second term is the identity matrix
What is useful is that the generators are obviously projectors.  Thus the product
of two generators is again a projector: 

tr(taa)2 = 1− 1
N

; tr(taa tbb) = − 1
N

, a "= b

Raise and lower indices by flipping order; automatic with directed lines.
Normalization of the diagonal generators just reflects a projector.

tr(tabtcd) = (tab)dc : tr(tab tba) = 1 , a != b



(( ) )
−

1

N
−

1

N

−

1

N

+
1

N2

( )+

=

Group identities from birdtracks
(tab)eg (tcd)gf =

N∑

a,b=1

(tab tba)cd =
N2 − 1

N
δcd

Just by drawing arrows, can show the
standard relation:



Birdtrack structure constants

−

+ + )(

+

−

2

N

+
4

N2

f (ab;cd;ef) :

d(ab;cd;ef) :

Can derive arbitrary
group identities just
by doodling.

P. Cvitanovic,
http://www.birdtracks.edu

Arbitrary group 
representations follow
similarly, for any group.

N.B.: extracting SU(N)
structure constants from
U(N).

Useful in a practical 
sense.



6. Effective theory, near Tc, in Euclidean spacetime



Effective theory for large A0

Leff
=

1

2
trG

2
ij + tr |DiA0|

2
+ m

2
D trA

2
0 + κ trA

4
0

Lattice shows <loop>  ≠ 1  near Tc => large A0 ~ T/g.  Effective theory for large A0?
For small A0, effective theory is just QCD3 + massive (adjoint) scalar, A0:

Symmetries for large A0?  Certainly, invariance under static gauge transf.’s.
Plus: “large” gauge transformations - spatially constant, time dependent.  For SU(N):

Ω(τ) = e2πiτT tNN

, tNN =
1
N

(
1N−1 0

0 −(N − 1)

)

This Ω(τ) is only valid c/o quarks: Ω(1/T) = e2 π i/N Ω(0) : center symmetry
    
With quarks, consider strictly periodic transf:  Ωp(τ)= ΩN(τ).

All theories must respect invariance under such strictly periodic gauge transf.’s.
     For any gauge group, with any matter fields; even for QED.



Effective electric field?

Want 3D effective thy. for large A0 ~ T/g.
Valid for r > 1/T, so A0 varies slowly in space, momenta p < T .

Original electric field Ei4D = Di A0 - ∂0 Ai .  So: Ei3D = Di A0 ?
For large gauge transf. Ωp(τ): 

Constant shift in A0 , time dependent rotation of Ai .   

Di A0 = (∂i  -  i g [Ai ,) A0  not invariant for AiaN as [taN, tNN ] ≠ 0. 
Of course, Ei4D  invariant under Ωp(τ) .

Ei3D =  Di A0  at small A0, but not at large A0!  
  Periodicity in q → q+1 violated: true only for kinetic, not potential terms.  
  Diakonov & Oswald hep-ph/0303129; hep-ph/0312126; hep-ph/0403108
  Megias, Arriola, & Salcedo, hep-ph/0312133      

Form Ei3D from Wilson lines?

Adiag
0 → Adiag

0 +
2πT

g
N tNN , Ai →

1
−ig

Ω†
p(τ)Ai Ωp(τ)



Electric field of Wilson lines

Wilson line SU(N) matrix, so diagonalize:

Static gauge transf.’s: diagonal matrix λ invariant, Ω changes.

Strictly periodic Ωp (τ) :  λa → λa + 2 π × integer: λa  periodic. 

Use just eigenvalues, Ei3D ~ ∂i λ?  No, Ei3D ≠  Di A0 at small A0

Ei3D hermitean, so:

Small A0 OK, but does not fix c1, c2...

Large but abelian A0, Ai = 0: if Ei3D = ∂i A0,  must have c1=c2=...=0. 

Necessary for interfaces to match at leading order.  Beyond: c1, c2 ... ~ g2. 

In general, infinite number of terms enter.  
       Calculable perturbatively, match through interfaces, Z(N) or U(1).

L(x) = Ω(x)†e iλ(x) Ω(x)

E3D
i (x) =

T

ig
L
†(x)DiL(x)(1 + c1|trL|

2 + . . .)



Leff of Wilson lines at 0th order
To leading order, 

Gauge covariant “average” in time: 

Lagrangian continuum form of Banks and Ukawa ’83,  on lattice:

To 0th order, Lagrangian for SU(N) principal chiral field.  
Non-renormalizable in 3D, but only effective theory for r > 1/T.
Instanton number in 4D = winding number of L in 3D

Linear model: many more terms.  Interfaces match approximately, not exactly.
Vuorinen & Yaffe hep-ph/0604100.  Kurkela, 0704.1416.  
de Forcrand, Kurkela, & Vuorinen, 0801.1566.  Korthals-Altes 0810.3325

E3D
i =

T

ig
L
† Di L

Leff
cl =

1

2
trG2

ij +
T 2

g2
tr |L†DiL|

2

L(τ) = e
ig

∫
τ

0
Ao(τ ′)dτ ′

; L = L(1/T )

E3D
i /T =

∫ 1/T

0

dτ L(τ)† ∂iA0(τ) L(τ) − L
†[Ai,L]



Confinement & adjoint Higgs phase?

Diagonalize L = Ω† e i λ  Ω  
Static gauge transf.’s U: e i λ  invariant, Ω not:

Electric field term:

1st term same as abelian
2nd term gauge invariant coupling of electric & magnetic sectors

<e i λ > = 1: no Higgs phase.  True in perturbation theory, order by order in g2

If <e i λ > ≠ 1, Higgs phase,
In weak coupling, diagonal gluons massless, 
off diagonal massive (a,b = 1...N)

But for 3D theory, gluons couple strongly.  Effects of Higgs phase?

N.B.: above ‘t Hooft’s abelian projection for Wilson line.

Ω → ΩU , Di → U
† Di U

m
2

ab = g
2|eiλa − e

iλb |2

tr |L†DiL|
2 = tr (∂iλ)2 + tr |[Ω Di Ω†, eiλ]|2



Loop potential, perturbative & not.

Leff
1 loop = −

2 T 4

π2

∞∑

m=1

1

m4
|trLm|2 .

U(N): constant L, 1 loop order:

Perturbative vacuum <e i λ > = 1,
stable to leading order, to any finite order in g2 . 

Can compute corrections to effective Lagrangian at next to leading order, NLO.
At NNLO, ~ g3  , need to resum mDebye .  Eventually, mmagnetic

SU(3) lattice: near Tc , pressure(T) ~ T4 and  ~T2 .

To represent: add, by hand:

Bf ~ # Tc2 “fuzzy” bag const.  Non-pert., infinity of possible terms.

Bf ≠ 0 ⇒ <e i λ > ≠ 1 ⇒ Higgs phase near Tc

                                             

Leff
non−pert.(L) = + Bf T

2 |trL|2



Confinement in Leff

SU(N), no quarks: in confined state, all Z(N) charged loops vanish:

Satisfied by “center symmetric” vacuum:

At finite N, perturbative pressure(Lconf) negative.  Not so good.

Large N: pressure(Lconf) ~ 1, vs. ~ N2 in deconfined phase.

At N=∞, center sym. state can represent confined vacuum.

Lconf familiar from random matrix models: 
      completely flat eigenvalue distribution, from eigenvalue repulsion.

Where does eigenvalue repulsion arise dynamically?  

〈trLj
conf

〉 = 0 , j = 1 . . . (N − 1)

Lconf = diag(1, z, z
2
. . . z

N−1) , z = e2πi/N
.


