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Consider a “pure” SU(N) gauge theory, no dynamical quarks.
Rigorously, a deconfining phase transition at a temperature T.

|. SU(>°) matrix models: Gross-Witten model as a tri-critical point.
AMMPR: spinoidal temp. = Hagedorn temp.

2. SU(3) renormalized Polyakov loops from the lattice.
3. Lattice: SU(3) deconfining transition close to the SU(~) Gross-Witten point.

But unnatural to be close to a tri-critical point.



Mean field theory: Z(N) vector

Consider a scalar field invariant under a global U(1) symmetry: ¢ — e'? O
Look for spontaneous breaking of U(1) symmetry through <gb> + 0

Start with the most general potential invariant under U(1):
Voay = m2|o12 + Ma(|oH)? + Ae(|o)® + ...

Can always fit <¢> , versus the temperature T, as the minimum of a potential.
But how do the mass and couplings depend upon T?

Mean field theory: mass”2 linear in T, coupling constants don’t change with T

2mi /N

If only Z(N) symmetry, ¢ — ¢ ¢ the potential also includes

Vzny = An (@Y + (¢")7)



Mean field phase diagram

For Z(3), cubic term => transition always first order.
When N#3, all phase diagrams look alike:
Lines of Ist and 2nd order transitions meet at a tri-critical point

Voay = m2|o12 + X162 + Ae(|¢)® + ...

Aq ]

m? =0 ., A >0 2nd order line =>

2
m° =X4 =0 Tri-critical point:

m? > 0 A < 0 | st order line: ------




Mean field theory: SU(N) matrix

' %
Consider the matrix for aWilson loop L = Pe"? f Apde
In the fundamental representation, L is a SU(N) matrix: L'L=1 ,det L=1

Transforms under local SU(N) transf’s, Q,as: L — QTLQ

Can have a global Z(N) symmetry (“topological”) 1 __ p2mi/N 1,
which breaks without breaking SU(N).
Usual order parameter: loop in fundamental representation: { — % tr L
T # 0: thermal Wilson line => Polyakov loop. Phases:

Z(N) symmetric = confined: ) =0, T < Ty

Z(N) sym. broken = deconfined: (¢) 0, T > T,

Loop ~ (trace) “test” quark propagator. Deconfining transition atT_d.



Matrix mean field theory

Matrix model = a matrix in the measure: Z = / dL eXp(—V)

Naturally obtain loops in all representations (unlike Potts model). Adjoint loop:

1
N2 —

Loop in rep.R /g = tr Lr/dim.R. Z(N) charge, mod N: €fund = 1, €qq; =0

gadj — 1 (‘tI‘L|2 — 1)

Most general potential sum of Z(N) neutral loops:
2
V:m gadj_l_zj )\jgj . €j:O
Naively: adjoint loop is a mass term, other Z(N) neutral loops higher couplings.
In the deconfined phase, all loops condense. How are they related?

In the confined phase, Z(N) chg’d loops = 0: how big are Z(N) neutral loops!?



Large N matrix models

Enormous simplifications at large N:e.g,, /4 ~ MP 1/N2

As N=> “factorization” => potential merely powers of the fundamental loop:
2 21012 2\2 2\3

Vo) /N =m7|l]" + A ([£]7)” + X6 (|€]7)
The global symmetry is reduced from U(l) to Z(N) by the term

Vi /N? = +An (Y + ()N) +
At large N, vary mass and couplings to reach:
confined phase:  (£) =0, (V)/N* =0
deconfined phase: () £ 0, (V)/N? ~ 1

Free energy of deconfined phase ~N”2 from # gluons.



Large N: van der Monde potential

Brezin, Ityzkson, Parisi & Zuber = BIPZ ‘78; Gross & Witten = G&WV ‘81
Kogut, Snow & Stone = KSS ‘82; Green & Karsch ‘84; Damgaard ‘87, D & Hasenbusch = D&H ‘94
Aharony + ...= AMMPR ‘03 Dumitru + ...= DHLOP ‘03; Dumitru + ...= DLPS ‘04

Do U(l) rotation so the fundamental loop, £ = tr /N , is real & positive.

BIPZ +... AMMPR: minimize with respect to eigenvalues of L
=>“potential”’ from the van der Monde determinant

Voam /N2 =+ 02, 1 < 1/2
Voarr /N? = —log(2(1 —£))/2+1/4, £ > 1/2

G&W: the vdM potential is discontinuous, of third order,at £ = 1/2
¢ < 1/2: only mass term-no ¢*  ¢% ... to ¢V

0 >1/2: eigenvalue repulsion from vdM det.=> ¢ < 1



Matrix models & the Gross-Witten point

Solutions minima of effective potential,  V.fr = VU(1) + Voam

~ 9 2
Introduce new mass parameter m° = m” + 1

For €<1/2 5 5 5 m? > 0: confined
Veff/N =+ m°/

m? < 0: deconfined

Gross-Witten point: m? = M=X¢g=...=0

AMMPR: take space = very small sphere, so gauge coupling small.

spinoidal point, m? =0, = Hagedorn temperature 1'qgq
Hagedorn exponential growth in density states, not limiting temp.

=> at Gross-Witten point, Hagedorn temp. = deconfining trans. temp.
away from Gross-Witten point, Hagedorn # deconfinement



Near the Gross-Witten point

All potentials have 3rd order discontinuity at ¢ = 1/2

0.2} VeffT
0.15! <= confined: ™m? = +.1
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deconfined=>

m? = —.1 ~0.02|




At the Gross-Witten point:“critical” |st order

Potential completely flat from 0 to /2.

Order parameter jumps at transition: : Verr 1
0)y:0—=1/2, m*=0
Non-analytic point in potential
coincides with new minimum.
KSS ‘82, AMMPR ‘03, DHLOP ‘03
0.2

Mean field: varying m"2 ~ temperature.

Transition first order: latent heat nonzero, aVeff(<€>)/am2 — 1/4

But “critical”: (physical) masses => 0, asymmetrically, at transition:

2 ~ 9 ~ ) -+
o 0Veys Mppys ~ M, M~ — 0

phys — BYZ

m

=) M2~V —m?, m?— 0



Gross-Witten = tri-critical point

At large N,

Vers/N2=m202 £ X+ X605 +... £<1)/2

Phase diagram looks the same, but: tri-critical point is the Gross-Witten point

AMMPR: Ay #0, Ag =0
Away from G-W ptalong Ay <0

~ ordinary |st order trans.: masses # 0
Jumpin (¢) > 1/2

DLPS: Ay, A6 #0 Away from G-W point,
ordinary |st order trans’s: masses # 0
Jump in (¢) arbitrary

Only G-W point “critical” Ist order:
masses = 0 and jump in () (to 1/2)
But must tune A4 = 0 to reach G-WV point.
(Other N’s marginal or irrelevant)
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= 2nd order line

Gross-Witten point
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Matrix models, N < «

Matrix model: 4 < N < «, Gross-Witten pt = ordinary |st order (masses # 0)

N=3: (adjoint = octet) + decuplet:

V/9:m2€8

Mo 410

{10 = (tr L tr L? 4 1) /10~ cubic invariant, transition always |st order
Svetitsky & Yaffe ‘82

KSS: at G-WV pt, (£):0 => 485 + .00 (~ 1/2!)
DLPS: with A1g # 0, at transition jump in (£) can decrease from /2

N=2: G-W pt 2nd order transition (higher loops => Z(2) critical point)

D&H ‘94, DLPS: in a matrix model, N 2 2, all loops vanish in the confined phase

<€R>:<V>:O,T<Td,VR

=> expectation values of Z(N) neutral loops in the confined phase, (Yad;)# 0,

due to fluctuations about matrix model.




Renormalized Polyakov Loops

Gervais & Neveu ‘80. Polyakov ‘80. Dotsenko & Vergeles ‘80. Brandt, Gocksch, Neri, Sato ‘81,82
lvanov, Korchemsky & Radyushkin ‘86. K & R ‘87,°92. Belitksy, Gorsky & K ‘03.
Kaczmarek, Karsch, Petreczsky & Zantow = KKPZ‘02. DHLOP ‘03.

Straight Polyakov loop: Polyakov loop with two cusps, 0 & I/2T
TT:imaginary time,
0=>1/T

In d+ 1 spacetime dim/s, T #0, ultraviolet divergences of straight loop ~ [ d“p/p
propagating field in d space dim/s. With cusp, ~ 1/v/p?

Renormalized loop after “mass” ren., ZR — Zplp, Zp = o—me" /T

R = irreducible representation:
3+1 dim’s: amy’ = + Crg*(1 + #¢* +...) (a=lattice spacing, Cr= Casimir)

Straight loops have no logarithm. Loops with cusps do.

2+1| dim’s: Straight loops have logarithm, no new log with cusps.



No bound on ren.d loops

Bare loop is a normalized trace => |[{r| < 1

For renormalized loop: (= (r/Zr = |((r)| < 1/Zg

) _— d’LU . . . .
=>IFm%’ >0VT, Zr =€ “"® — 0 in the continuum limit,a = 0,

bare loops vanish & there is no bound on ren’d loops.

Numerically: we find that all divergent masses always positive.
E.g.:as T =00, ren'd loops approach | from above: (Gava & Jengo ‘81)

T 1= () oas* [ ~ (ORI b )

2 2
k= + mDebye

Cr (QQN)3/2> => negative “free energy”

((r) ~ exp ("’ N 8m/3 McLerran & Svetitsky ‘82

Smooth large N limit: Cr~ #N +0O(1), N — ¢



Ren.d Polyakov loops on the lattice

Basic idea: compare two lattices, same temperature, different lattice spacing.
If a << |/T, ren’d quantities the same.

N_t = # time steps = |/(aT) changes between the two lattices:get Z R

10g (‘ <€R> D dth £+ fcont flat

t

cont)

<£R> = exp(— Numerically, we find 1ot ~

SU(3) Wilson action, N_t = 4,6,8,10; # spatial steps = 3 N_t
Lattice coupling constant B = 6/g"2: related to temperature by Non-Pert. Ren.

Coupling for transition changes with N_t, Bacconf(IV¢)

=> to obtain the same T at different N_t, must compute at different §
Doable, not trivial.



Bare triplet loop vs T, Nt
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Bare octet

loop T 0 0

0.00

Bare octet loop vs T, Nt
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Sextet loop
very similar

Decuplet
loop only
measurable

7 at Nt=4
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Lattice SU(3): divergent “masses”

DHLOP: Z_R from same T, different lattice spacing. Triplet, sextet, octet loops.
KKPZ:Z R from short distance behavior of two-point functions. Triplet loop.
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Lattice SU(3): renormalized Polyakov loops
At transition, jump in () to ~.4 (x 10%)

Ren/d loops: DHLOP

Ren.d loops: KKPZ
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Lattice: SU(3) close to SU(«), ~25%

At large N, “factorization” => all loops product of fundamental (& anti-fund.)

Migdal & Makeenko ‘80, Eguchi & Kawai ‘82, Dam

0.1

566 — <€6> — <£3>2 ~/ 1/N

0lg = (lg) — [{£3)]* ~ 1/N20.

0 L

DHLOP:“spikes” in diff. loops
Corrections to factorization
small except just above T _d

max |6lg| ~.2@Q 1.1 Ty
max

-0.2 ¢

max |6fg| ~ .25 Q@ 1.3 T,

gaard ‘87, D&H ‘94
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Max. sextet ~ spinoidal point = Hagedorn temp. AMMPR: max. adjoint “spike™?



Bare octet
difference
loop/bare
octet loop:
violations
of factor.
50% @

Nt =4
200% @
Nt = |0.

<adj — |threel*>/<adj>

Bare loops don’t factorize

|
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N
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Lattice SU(3): masses ~ 0 at 7y: near Gross-Witten

APE, Columbia ‘89, Bielefeld ‘93 + ... o (7))
1
. . c(0) o

In confined phase, string tension e 14T
from 2-pt function of Polyakov loops 6=

at large distances:

05+

(" (2)€(0)) — [O)? ~ e T2/T 0|

SU(3): versus zero temperature,at T _d
the string tension is smaller by ~ 0. 02}

Gross-Witten, SU(%): jump to /2, masses = 0]

0
0.88

09 : : .
Lattice SU(3): jump to ~.4, masses ~ 0 9T, 1 Ty T

Use matrix models to quantify how close SU(3) T/Ty —
is to the Gross-Witten point of SU().



Fluctuations in a2 matrix model

Up to now, only potential:

V:m2€adj—|—2j)\j€j,ej:()

Lots of kinetic terms:
for Wilson line

2
“electric loop” + induced:
—2
Zel = 9er + Jadj gadj + ..
For loops alone,

Wloop — Zj hj fj/ &;Eju &L-Ejm , > €; — 0

and even (N=3):

S~

W = tr (DZL)(DzL)( g3 l3 + .. )

g’s & h’s = couplings. Plus magnetic...

Fluctuations modify mean field equations.
Start with simplest case: just adjoint loop in potential, ~ “mass” term.



Matrix models & ren’d loops

OK fit with just adjoint loop, m"2 ~ temperature: m* = .46 + .33 T /T

Fails near Z4:jump in (/3) to .485, not ~.4 from lattice. Need to add:
(1) decuplet loop in potential, A10 big |

2) triplet-sextet kinetic, h small ~
(2) trip 09 t{(lr) T )
Use this m"2, plot all loops vs T => 0.8 |
0.7 |
Deviations greatest for sextet loop, 06|
but sextet very sensitive to (1)&(2) <5
oqgé 0.5 |
0.4 |

Fit “spike” in sextet difference loop!?
0.3 t

“Spike” in octet difference loop: 0.9 |
=> “spike” in octet coupling?

0.1r

0.0

Mean field predicts decuplet loop!




Deconfinement in SU(3) close to Gross-Witten!?

SU(N) matrix models agree with lattice results for the deconfining transition:
SU(2) second order: Redlich, Satz & Seixas ‘88...Engels & Scheidler ‘98

SU(N), N24, first order: N = 4, 6, 8: Lucini, Teper, Wegner, ‘02,03
N = 4: Batrouni & Svetitsky ‘84; Gocksch & Okawa ‘84 ....Ohta & Wingate ‘00; Gavai ‘O

SU(3) first order, but weakly:
closer to 2nd order point of SU(2) or Gross-Witten point of SU(%)?

But need to tune two parameters reach a tri-critical point, m* = \, = 0
(e.g., temperature and concentration of two-component systems)

=> unnatural for SU(3) to be near the Gross-Witten (tri-critical) point
Accident! Is deconfinement in SU(4), SU(5)... close to the Gross-Witten point!?

Look for (large) decrease in the string tension just below 1y



