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the challenge:

analyze an ever growing amount of data   
within the best theoretical framework available 

in a finite amount of time
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a highly non-trivial exercise:

recall: information on spin/nucleon structure and fragmentation
cannot be read off from data but is hidden inside  
complicated convolutions, summed over many subprocesses

many different processes needed to pin down all aspects of pdfs/ffct

all processes must be analyzed in NLO (or beyond) to control theor. errors
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outline of pdf analysis:
involves multi-parameter fitting

→ 1000’s of evaluations of
NLO cross sections needed

(a proper error analysis adds to this)

the way to do it: global χ2 minimization

computing time for a global analysis at NLO becomes excessive

the problem:

NLO expressions are fairly complex
and numerically very time-consuming
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a common “workaround”:

but K itself depends on unknown pdfs/ffct
K = K(pT,y, …) and often large
K different for dσ and dΔσ → no cancellation in ALL

K is different for different subprocesses
even LO cross sections for pp processes are too slow!

taken from M. Wobisch (fastNLO)example: K for high-pT jets at TeVatron

introduces unknown systematic error
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19th century math comes to help …

R.H. Mellin
Finnish mathematician

integral transformation: Mellin n-moments

inverse

choice of contour → later

crucial property: convolutions factorize into simple products
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well-known application: DGLAP evolution

Bjorken-x space:  integro-differential equations → no analytical solution

e.g. LO non-singlet
(valence) evolution

known up 
to NNLO

full singlet evolution more complicated: coupled equations

Mellin-n space:  ordinary differential equations → analytical solution

n-moments
known analytically

solve analytically (to all orders !):

input
(fitted) pQCD scaling viol.
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back into x-space: optimizing the contour
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“optimized”
c: to the right of rightmost pole (convergence!) 

f(x) are real functions: (fn)* = fn*

→ parametrize contour to integrate over real variable z

see, e.g., A. Vogt
“QCD-PEGASUS” code 

receipe for numerical fast but reliable inversion:

C1 contour with φ=3π/4: exp. dampening for large |n| → can use small zmax

in practice: zmax adaptive depending on x (large x more costly!)
choose n as supports for Gaussian integration VERY FAST!
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remarks on different solutions of DGLAP eqs.:

the iterative x-space solution (e.g. Runge-Kutta method) and

the analytical n-space solution may differ in f(x,Q2)  !

of course, differences are only beyond the order considered
but can be non-negligble in comparisons of different codes !!

iteration introduces more scheme-dep. higher order terms

n-space solutions truncated at given order satisfy DGLAP eqs. 
“only” in the sense of a power expansion

the treatment of the RGE for αs(Q2) is also an issue
(exact numerical solution vs. power expansions)
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summary so far:

the Q2 scale evolution of pdfs (and frag. fcts.) 
is not an obstacle in a global χ2 analysis

it can be done to any given order in 
a fast and reliable way

but the analyses are on the cross section level …
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inclusive DIS data
can be included at basically no extra cost in a global fit

hard scattering coefficient functions known up to NNLO:

LO NLO

(Δ)Cq

(Δ)Cg

X

sufficiently “simple” functions: Mellin n-moments can be taken analytically!

→ g1(x,Q2), F2(x,Q2), … are
obtained by a fast Mellin 
inversion of their n-moments
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semi-inclusive DIS data

crucial difference: coefficient functions now depend on two variables

“only” NLO corrections are known
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nevertheless, Mellin moments can be taken analytically!

but this time we need a double-Mellin transform:
Altarelli, Ellis, Martinelli, Pi; MS, Vogelsang

and a double Mellin inverse (→ later!)

in practice, however, experiments integrate over zmin & 0.2

→ easier to introduce an “effective” 1-dim. coefficient function 

can be pre-calculated once prior to the fit and then used like
an inclusive DIS coefficient

also VERY FAST!  X
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remark on data averaged over x- or z-bins:

can be also directly implemented in moment space:

for instance,

insert Mellin representation for g(x) and perform x integration:

more efficient than computing g(x) first and then integrating in x-space !

this “trick” was used, e.g., in the global analysis of fragmentation 
functions (de Florian, Sassot, MS) to include OPAL flavor tagging probabilities
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it is in the analysis of hadron-hadron data
where the double Mellin moment technique
exhibits its full potential…

earlier ideas: Berger, Graudenz, 
Hampel, Vogt; Kosower

MS, Vogelsang
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NLO expressions in pp are much more complicated than in (SI)DIS 

→ Mellin moments cannot be taken analytically & numerically very slow

example: pp→ π X

express pdfs by their
Mellin inverses

can be pre-calculated on grids!
fitstandard

Mellin inverse

idea: re-organize multi-convolutions by taking Mellin moments

applicability: completely general, tested for pp→γX, pp→πX, pp→jetX
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contains all time-consuming integrations
calculated once and forever before the fit
stored in large n×m grids

fast numerical Mellin inverse in complex n,m plane
exponential fall-off of x-n, x-m

along contour optimal
integration = summation in n,m

Mellin moments of ansatz for pdfs in x-space, 
e.g., fa(x,μ0) = N xα (1-x)β

parameters determined in standard χ2 analysis

Mellin technique in-depth: the ingredients
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Mellin technique in-depth: taking the inverse

straightforward extension to double contour: 

use that pdfs are real and parametrize
contour with 2 real parameters un and um

(same for m)

find:

again, choose n,m as supports for Gaussian integration → num. fast!

bookkeeping: for each subprocess we need two grids: (n,m) and (n,m*) 

[in fact this requires four runs (!!) of the NLO codes 
since -- so far -- they cannot handle complex valued “pdfs” x-n]
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Mellin technique in-depth: performance & accuracy

precision: usually, 64×64 grids sufficient for less than 0.5% deviation

example: prompt photons

performance:
“before“:   typ. NLO code O(30sec/pT value)

“after Mellin tune-up“: bullet-train performance

100 evaluations of x-sec take a few seconds

ideal tool for multidim. fitting beyond LO
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Mellin technique in-depth: pre-calculated grids

how long does it take?

example: pp → jet X (to analyse STAR data for ALL)

6 different subprocesses to consider: gg, qg, 4* ”qq’” 

→ 6 × 4 × 64 × 64 ' 105 calls of the NLO code per data point

→ current # data points keep 4 dual-core CPU’s busy for a week

sufficient computing power is essential for the pre-analysis stage

example: pp → hadron X (to analyse PHENIX & STAR data for ALL)

many more grids since fragmentation distinguishes flavors !!

example: pp → γ X (future)

somewhat less demanding than jets X
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Mellin technique in-depth: improvements

good news: grids only “know about” the kinematics of the exp. bins

→ if binning & kinematics (e.g. η-range) remains unchanged
we can simply add more bins if they become available

Mellin technique has passed an important stress test in
global analyses of fragmentation functions    de Florian, Sassot, MS

improvements: codes not really optimized for speed

parallelization possible 

user intervention still required → automatization

currently, changing μr,f requires new grids
→ separate grids for the few terms which depend on μr,f
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ready to analyze ...
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